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SECTION 1 - INTRODUCTION

1.1 OBJECTIVES OF STUDYING THE SOFTWARE TOOLS

This volume of the report deals with the software tools required to support a
Language Control Facility (LCF). The report includes an analysis of these

tools, and recommendations for the use and/or enhancement of them for the

LCF application. Five software tools are analyzed: (1) a compiler implementa-
tion tool (JOCIT), (2) a language utilization measurement tool (JLMT), (3) a com-
piler validation system (JCVS), (4) an automated program verification system

(JAVS), and (5) a language specification tool (SEMANOL).

1.2 DOCUMENT ORGANIZATION

Section 1 provides an introduction to this volume. The remainder of the volume
is concerned with an analysis of the support software tools and a discussion of the

recommended tools for the LCF.

In Sections 2 through 6, a brief description of each tool is followed by an analysis
of how well it has met its original design requirements and how relevant it is to
the LCF concept. Section 2 discusses the JOVIAL Compiler Implementation Tool,
JOCIT, which is aimed at providing low cost and efficient JOVIAL compilers for
the J-3 language. Section 3 discusses the design of a statistics-gathering method-
ology known as the JOVIAL Language Measurement Tool (JLMT). Section 4
addresses the existing JOVIAL Compiler Validation System (JCVS) which has been
implemented for both the J-3 and J73 Level I languages. Section 5 discusses the
JOVIAL Automated Verification System (JAVS) implemented for JOVIAL/J-3 users
as a companion to the JOCIT Compiler under the HIS-6000 series machines with
the GCOS operating system. Section 6 presents the results of studying the
SEMANOL system, a programming tool for describing both the syntax and the

semantics of an HOL, as a machine-verifiable language specification.

Sections 7 through 14 present recommendations for using the tools within the LCF.
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Recommendations for tools are introduced in Section 7, and the functioning of the
tools within the LCF is discussed in Section 8. Section 9 presents recommenda-
tions for enhancing the JOCIT program to meet the LCF rehosting and retargeting
requirements, the integration of other tool functions into the compiler, and the
extension of the compiler building tool concept to other HOLs. Section 10 dis-
cusses the problem of language specification. Section 11 presents functional
design requirements for a statistics gathering function within the LCF. Section 12
presents recommendations for enhancing the JCVS tests to meet the LCF compiler
validation requirements. Section 13 discusses the incorporation of JAVS into the
LCF and how the compiler, statistics collector, and program validator may be
integrated into a coherent package, employing common interfaces. Section 14
closes this part of the report by presenting recommendations for support tools to

assist in program development, debugging, and HOL translation.

These sections also discuss how the tools function together within the LCF, and
where tools are considered deficiencies. Recommendations are made for incor-
porating a compiler implementation tool, statistics-collector, compiler validator,
and a program validator. In addition, these sections discuss how these HOL soft-
ware tools are to be supplemented by an HOL language specification and certain
support tools to assist in other aspects of program and system development using
the HOL. The sum of Sections 7 through 14 is a set of software functional design
requirements for an LCF. Since the majority of the tools already implemented
support the JOVIAL/J-3 language, most of the discussion is J-3 oriented. How-
ever, the presentation is supplemented with design recommendations for broad-

ening the tools' applicability to other HOLs.
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SECTION 2 - JOCIT

2.1 BACKGROUND

The original intent of the JOCIT effort was to develop a compiler building tool for
the J73 language. When the contract was awarded, the J73 language still was not
firmly defined, and after a few weeks of study of the language it was determined
that the development costs were higher than originally estimated. Therefore,

in order tc produce a more useful product that demonstrated the principal

elements of the original objectives, the project was redirected towards develop-

ing a J-3 compiler building tool. Since the need within the Government for a J-3

g

capability was sufficiently real and urgent, the new project goals were highly

2 NN AN

practical. Inc ed, the JOCIT J-3 compiler developed on the WWMCCS machine
(HIS-6000) has been adopted as a standard by two significant Air Force projects.

S T S

5 The principal objectives of the JOCIT J-3 development were to:

® Reduce the time and cost of implementing and maintaining

JOVIAL J-3 compilers

e

° Ensure that JOVIAL language sets implemented on different

computers are consistent

A P\ N

° Enable the rapid inclusion of any new JOVIAL features inio
every compiler built with the tool, including those compilers

" implemented before the feature was accepted

° Enable the compilers built with the tool to incorporate modern

| optimization techniques that overcome many forms of poor
g

programming

Although the redirection to produce a running, debugged, efficient, and reliable

J-3 compiler necessarily had the effect of diluting some of the goals of the tool,

2-1
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nevertheless, the objectives were largely met. The most objectively measurable
result of the JOCIT effort was the development of a production-grade J-3 com-
piler currently in heavy operational use. However, it is somewhat difficult to
assess the result of the tool development in equally objective terms, because no
new retargeting or rehosting effort has been undertaken. The following para-
graphs describe the essential features of the JOCIT program and assess the rela-

tive success in meeting the stated goals.

2.2 DESIGN FEATURES

The following design elements were incorporated into JOCIT:
o Target-machine-dependent code isolated into functional modules

® Global optimization techniques to meet the requirements of language
independence, host-machine independence, and target-machine

independence

@ The GENESIS system used for writing the J-3 language specifica-
tion, the resulting tabular form of which is processed by a

language~independent analyzer program

° A prototype compiler to compile the full J-3 language; the prototype
can be used as a model for rehosting the J-3 version or as a basis

for building a J73 JOCIT

° Over 95 percent of the JOCIT code written in an HOL (SYMPL);
use of machine code is restricted to host-machine-dependent

interfaces

2.3 CHARACTERISTICS OF THE JOCIT J-3 COMPILER

JOCIT embodies the following three features which, together, realize the goal of
a tool for the generation of standard JOVIAL J-3 compilers:

® JOCIT is a stable, well-debugged, efficient, production-quality

J-3 compiler. It realizes the most advanced optimization in any

2-2




JOVIAL J-3 compiler to date, and even though the compiler is
large (40-50K words of HIS-6000 main memory), it is quite fast

and generates extremely informative and useful listings.

@ Retargeting of JOCIT is a known, relatively straightforward, but
: not trivial process. It is achieved through total replacement or
partial modification of certain compiler modules, and the instzlla-

tion of the JOVIAL library on the new target machine.

@ Rehostability of JOCIT is achieved principally by programming the
JOCIT modules in SYMPL. Rehosting is considerably more com-
plex than retargeting, but the steps are well understood and meet
the tool requirement by costing only a fraction of a comparable,

totally new compiler implementation.

These three considerations are addressed in the following subsections.
2.3.1 USER INTERFACE

The JOCIT J-3 compiler is operated in a standard fashion entirely compatible
with other GCOS language processors. That is, the command syntax and file
specifications conform to GCOS standards, and the JOCIT user is required to

learn only the computer options in order to invoke the cowmpiler,

2.3.2 THE J-3 LANGUAGE

JOCIT implements the full J-3 language, with certain extensions added to satisfy
unique customer requirements (including a special source language I/0 facility
to satisfy a user requirement for compatibility with the nonstandard Honeywell
J-3 compiler). The diagnostic capability is thorough, and extensive use is made
of parameterized diagnostics (for exa'ple, providing for insertion of identifier

or reserved word names).
1. 2.3.3 COMPILER LISTINGS

The JOCIT compiler provides a comprehensive set of compiler listings. These

listings include interspersed Phase I diagnostics; a consistent diagnostic format

2-3
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for all phases; an extensive object program assembly language-format listing
identical to GMAP, a complete "'set-used' listing for all program constructs
(define names, status constants, programn variables, labels, procedures, etc.);

and a program environment listing.
2.3.4 OBJECT PROGRAM EFFICIENCY

The JOCIT program expends much effort to obtain ohject program efficiency.
This has been achieved through two means: global, target-machine-independent
optimization, and a code generation scheme that optimizes register usage and

performs considerable special case analyses. Global optimization includes:

° Elimination of redundant common expressions computations

@ Redistribution of loop-constant code

° Reduction of formal loop operator strength

° Improvement of compile-time constant arithmetic and subexpres-

sions (e.g., elimination of multiplications by 1)
° Recognition of dead code

° Evaluation of compile-time constant predicates

(e.g., AA =13...IF AAS)

All computational memory is embodied in the optimizer-code generator file (IL)
interface, while local optimizations are performed by the code generator to pro-
duce the optimum sequence for each recognizable case. The combination of

global and local optimization, which attempts to iriaimize generated code space, is
successfully realized in the JOCIT J-3 compiler. Further improvements that

would have a high payoff in production programs are:

° Regional index register dedication
° Loop control variable (LCV) index register dedication
[ Improved strength reduction, including test replacement and dead

LCi/ elimination
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] Dead variable analysis
® Code straightening

Of the 60 percent improvement in generated code over the previous HIS J-3 com-

piler, 10 to 15 percent is attributable to global optimization, while the balance is
derived from the local code generation algorithms. Even though there is room
for improvement, the level and quality of the realized optimization are the

notable achievements of the JOCIT J-3 model.
2.3.5 COMPILER EFFICIENCY

Considering its optimizing capabilities, the JOCIT J-3 compiler is comparatively
fast. However, the compiler's instantaneous main memory requirements are
quite high; 40K words is the minimum partition plus the size required for the
compiled program's symbol table. The compiler already is heavily segmented
into separate overlay loads. Only a radical redesign could reduce the core
requirements, and only at the cost of severely reduced compiler speeds. The
large size of the compiler is due to the following reasons (listed in descending

order of impact):

o Complexity ~ The JOCIT J-3 compiler was designed for maximum
user utility. It performs an enormous number of complicated
tasks in order to produce pinpoint diagnostics, to perform global
flow analysis/optimization, to pack tables optimally, and to pro-

« vide a sophisticated and useful COMPOOL facility. The augmented
J-3 language it compiles is huge, and the code generator achieves
its goals through complex algorithms that require a considerable
number of source code lines to effect. It is doubtful that the num-
ber of lines of code in the compiler itself could be materially
reduced without seriously compromising user convenience and

object code performance.
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% i @ Compiler Architecture - The compiler uses a minimum number of

{ phases and intermediate files and requires a large symbol table to *;

be resident throughout the compilation process. It is conceivable

that by partitioning the compiler into more functional phases (a
multipass code generator is a possibility) the maximum phase size
could be reduced; but, as pointed cit earlier, compiler speed
would be reduced and additional program complexity (more inter-

mediate 1iles, for example) would result.

° Use of HOL - Because the JOCIT J-3 compiler is written in SYMPL
and compiled by a small compiler which incorporates only a modest
number of local optimizing algorithms, the JOCIT compiler con-
tains more lines of object code than would be the case if it had been

written in assembly code or compiled by a sophisticated, optimiz-
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ing SYMPL compiler. A more compact compiler also could be
achieved by rewriting the JOCIT compiler using J-3, thereby
obtaining the benefits of the compiler's own optimization. How-
ever, the J-3 language is much less suited to compiler implemen-
tation than is SYMPL and carries excess baggage (e.g., fixed
point arithmetic, lengthy prologues and epilogues) that is costly
and unnecessary. Optimizations could be added to the SYMPL
compiler to reduce object code without unduly compromising

rehostability or retargetability of either SYMPL or JOVIAL.

2.3.6 DEBUGGING (USER)

The inclusion of the MONITOR statement and ENCODE/DECODE provide consid-

i erable debugging convenience for the user. In particular, the availability of the

compiler command option to suppress compilation of all MONITOR statements
| allows the user the convenience of retaining his MONITOR statements in the
: source program without paying the compilation ~ and resulting object

program - price.
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2.3.7 DEBUGGING (COMPILER MAINTENANCE)

The JOCIT model includes a wide range of built-in compiler debugging features,
mostly in the form of formatted table and file dumps that can be selected indi-

vidually during maintenance-mode execution of the compiler. The debugging rou-

= tines themselves occupy symbol table space and are overwritten by symbol table
entries during production-mode compilation. Thus, the production mode com-
piler is not enlarged since the maintenance debugging routines are not ordinarily
present; however, full debugging capability is available in the compiler by exer-

cising an option.
2.3.8 RELIABILITY

The reported error rate on the production JOCIT J-3 compiler is comparatively
low. The errors tend to be distributed throughout the compiler modules, and it is
~are for the compiler to fail completely. Not surprisingly, the most vulnerable
phase of the compiler is the optimizer since very large programs with complex
flow can cause the optimizer to abort. However, in keeping with the diagnostic
approach of the design, these failures are (almost without exception) self-
detected anomalies. Most optimizer failures relate to unnecessarily complex
space management functions which are subject to unpredictable, subtly-
compounded errors. The forthcoming JOCIT improvements project, which
provides for considerable optimization enhancement, will include simplified
restructuring of the optimizer data base and space manager to strengthen this

area considerably.

2.4 RETARGETING

In order to achieve retargeting of the present JOCIT model, the following steps

are required:

1. Install library on target machine.
2. Adjust compiler code for target machine sensitivity.
3. Write new direct code processor.
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4. Write new code generator.

5. Modify the editor phase to produce object code listing in new

target-machine format.
6. Add new object module formatter.

1 Provide for translation of host-machine constant formats to

target-machine formats.
These steps are discussed in detail in the following paragraphs.
2.4.1 LIBRARY INSTALLATION

The J-3 library consists mainly of I/O and ENCODE/DECODE routines, string
routines, and MONITOR routines. Retargeting requires rewriting these routines
for each new target. Except for the MONITOR routines written in SYMPL, these
routines are written in assembly code that is not directly transferable to a new
.arget machine. Installation of the library is not a simple task since even the
MONITOR routines must be rewritten (unless, of course, a SYMPL compiler

exists for the new target machine).
2.4.2 ADJUSTMENT FOR TARGET-MACHINE SENSITIVITY

Many routines within the compiler are affected by various characteristics of the
target machine. These are partly parameterized through use of a target-machine
descriptor block (COMMON Block COMOST). waever, this parameterization is

not yet complete. Typical parameters of interest are:

° Target word size

° Target byte size (bits per byte)

[ Target bytes per word

& Maximum and minimum integer values

€ Maximum and minimum floating values

° Medium packing access field descriptions
) Addressing units per word
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® Character set internal representation
® Target numeric-value representations

The following routines within the compiler presently must be adjusted as

described below:

;- ALOCTR Object Program Data Allocator - Describe medium

packing and type characteristics.

XREF Cross-Reference Lister - Tailor target-dependent
listing.
CCP Compiler Control Program, i.e., control card

scanner - Recognize multiple target option.

JXEC Compiler Executive or '"cradle' - Sequence the com-
piler as necessary for different target-dependent phases

Ik (e.g., the code generator).

f COMOS8T Target Parameter Data Block - Mecdify target-machine
5 k parameters.
4
1 PCON Constant Posting Routine - Modify as necessary to reflect
B different internal forms for target.
JINIT Initialization of Compiler - Post target-specific intrinsic

functions, if any (for example, the correct library routine

R R S

’ ¥ entry point name for the string routines, I/O routines,

‘ ete).

i f

; 3 JPF1 Pass 1 Analysis Pragmatic Functions - Convert source
I §

L E form constants to target form.

[:

| i PF1PR1 Preset Processing Subroutine of Pass 1 Pragmatic Func-

tions - Prepare preset constanis in target format.

OPT2A Pass 2 Optimizer Constant Arithmetic Routine - Modify

constant arithmetic to manipulate target form values.
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Most of these modifications are individually trivial; however, the number of dif-
ferent routines to be examined and modified makes the composite task moder-

ately complex.
2.4.3 NEW DIRECT CODE PROCESSOR

The direct code processor must be rewritten for each new target-machine assem-
bly language format. This processor is a functionally separate module which
must be replaced in the link-edit of the first analysis phase. This necessitates
target-machine sensitivity in JXEC to load the proper phase, and requires the
maintenance of a unique analysis Phase 1 for each target supported (all but the
direct code processor within the phase have the same code for each target

machine).
2.4.4 NEW CODE GENERATOR

The major modification for retargeting is the writing of a new code generator.
If the level of local optimization and the effective realization of the global opti-
mizations performed by the optimizer are to be sustained, a substantial effort is

required.

The basic architecture of the current HIS-6000 code generator may be retained
(which considerably reduces the design effort), and much of the machine~
independent code (e.g., the triad table builder) need not be rewritten. Still,

this must be considered a mujor task. There will be one code generator for each

target machine; JXEC will select the appropriate code generator phase.
2.4.5 EDITOR PHASE MODIFICATION

The editor phase must be modified (there wiil be a unique editor for each sup-
ported target) to generate the proper assembly~like object code listing. The
preset-constant processing also must be modified to align values in a manner

consistent with the target machine characteristics.




e — : R

2.4.6 OBJECT MODULE FORMATTER

An object module formatter (actually a part of the editor phase) must be written
for each target. The scope of this task is a function of both the complexity of the
object module format requirements and the reliability and clarity of the system
documentation that describes it. This can range from relatively straightforward

to extremely arduous.
2.4.7 TRANSLATION TO TARGET CONSTANT FORMAT

This process has been identified in preceding paragraphs. The problem is to con-
vert from the compiler's internal constant representation (HIS-6000 format) to

the target machine format. This requirement affects several compiler modules.
For example, when the optimizer performs compile time comparisons between
character constants, correct inequalities may be computed only when using the
target representation, since its collating sequence may not be the same as the

HIS (host) character representation.
2.5 REHOSTING

Moving a compiler from one machine to another is a complex and demanding task.
f g Within the constraints of the project noted earlier, the JOCIT program was

if -. implemented with rehosting as an important but not overriding design critericn.

| Thus., when two criteria stood in conflict - often the case during the short term

of the project - the production compiler objectives governed.

¥ Rehosting of JOCIT is not an easy task, but the rehosting procedure is well
understood and has been tried; the JOCIT model was developed on the 1108 and
subsequently rehosted to GCOS. This effort was much more than just a rehost-
ing, however, so it cannot stand as a wholly objective measure of the rehost-
ability of the design. Three major elements of the compiler did prove to be
portable; these were the GENESIS-based analysis phase, the optimizer, and the
SYMPL compiler. The first two were extensively modified, so that subsequent

rehostability is not directly inferrable from that experience. However, as
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modifications were applied, rehosting considerations influenced the design, so that

these programs are expected to be even more portable than their predecessors.

As used in this section, rehosting means moving the JOCIT J-3 compiler model
to a new compiling-machine environment. Rehosting in this sense does not entail
retargeting for the same machine; this is considered separately. The minimum

rehosting steps are:
1. Installing the JOCIT executive on the new host.

2. Retargeting the SYMPL compiler for the new host (the SYMPL

compiler itself need not be rehosted).
3. Adapting the compiler data base to the new host.
4, Reformatting diagnostic messages for the new host.
o, Modifying GENESIS to generate tablcs for the new host.

6. Tailoring constant (including preset constant) processing to the

new host formats.

= Recompiling all JOCIT modules including GENESIS output (which
is in the form of SYMPL source statements) through the retargeted

SYMPL compiler.
8. Linking and integrating the recompiled modules on the new host,

e Testing the integrated compiler using a selected target (perhaps

the new host itself) as the testing medium.
These rehosting activities are amplified in the following paragraphs.
2.5.1 INSTALLING THE EXECUTIVE

All of the machine-dependent and operating system-dependent code is isolated in
a set of modules known collectively as the compiler executive (or cradle, as it
is sometimes called). To achieve maximum compiler performance, and to fit the

compiler's executive requirements most efficiently to the host machine, these
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routines were written entirely in host-machine assembly language (GMAP). The
executive requirements are extensive and support both the JOVIAL and SYMPL
compilers, which are integrated into a single link-edited program. The princi-

pal executive functions are:

) Control card processing

° Compiler phase selecting, sequencing, and loading
° Buffer management and file controi plock definition
° Space management

® All file management and 1/O operations

® Listing control

° Intermediate file debugging dumps and control

° Exception processing

Although the code in the executive is a smali percentage of the code in the com-
piler, it must be considered "difficult' code, since it deals intimately with the host
operating system conventions. Rehosting the executive begins with a detailed
analysis of the host system services, itself a substantial effort. Actually, this
effort can be simplified by existing familiarity with the new host system or by
simplified or well-documented interfaces. On the other hand, to retain the pres~
ent level of executive efficiency, this effort may be expected to be moderately
demanding at best. Where efficiency is not a consideration ~ this must be
specified in the rehosting requirements - the effort may be simplified by writing
in a language such as FORTRAN. Still, the execuiive embodies many interfaces,
both on the compiler side and on the system side, and this portion of the rehosting

task is a substantial effort.
2.5.2 RETARGETING SYMPL

A code generator must be added to the SYMPL compiler to generate code for the
new host machine. This is the principal bootstrapping mechanism. The gener-
ator must be supplemented by an object-module formatter and a code-listing

editor. At a minimum, these are moderate efforts. This has been proved by




modification of the SYMPL compiler numerous times in the past. The level of
effort is largely determined by the sophistication of the local optimizations
attempted in the generator, and this is dictated by the efficiency requirements

of the rehosted compiler.
2.5.3 ADAPTING THE COMPILER DATA BASE

The compiler data base consists of numerous data declarations written in SYMPL.
Since at the time JOCIT was developed the SYMPL compiler required program-
mer specification of array item packing, adapting the data base requires rewrit-
ing these declarations. The difficulty of this problem may be lessened in two
ways: (1) rehosting to a machine whose word size is not less than the HIS-6000
word size (36 bits) and (2) parameterizing the data bace declarations. TFor
example, if JOCIT were to be rehosted on the UNIVAC 1100-series machines
whose word size is 36 bits, the adaptation effort is approximately zero. (It may
be greater than zero if an attempt is made to optimize part-word references into
half, third, and sixth-words, which are directly accessible on the 1100-series. )
Some parameteriz.ation of the data declarations already exists; the optimizer
phase, for example, is parameterized for any host machine word size of 16 to 60
bits. Adaptation also may require restructuring of the compiler common data

for a host that does not support the named COMMON facility.
2.5.4 DIAGNOSTIC MESSAGES

The diagnostic messages in the compiler are coded using a special GMAP macro
in order to make insertion of new diagnostics extremely simple. For a new host,
a similar macro (or equivalent) must be developed, and the messages rewritten.

This is an isolated, relatively simple task.
2.5.5 GENESIS MODIFICATIONS

The output of GENESIS is in the form of SYMPL source language array and status
declarations, switches, and preset data. The only required change to GENESIS

is to allow for generation of table declarations to conform to the host machine
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word size. GENESIS already accommodates 32-bit, 36-~bit, and 60-bit hosts; for

word sizes not included in this set, modifications must be made.
2.5.6 CONSTANT PROCESSING

Code within the JOCIT model must be examined for sensitivity to HIS-6000 con-
stant representation and collating sequence. Where there is implicit assumption
about host format, this must be parameterized. It is anticipated that such sen-
sitivity affects very few compiler modules. The primary concern in internal
constant representation is for retargeting, especially where target word size
exceeds host word size. For example, this problem may be solved best by a
canonical constant representation from which any target representation may be
derived, and by routines which convert back and forth as necessary for constant

arithmetic.
2.5.7 RECOMPILING JOCIT MODULES

Once the above tasks are accomplished, the first step in the physical rehosting
task is to recompile all SYMPL coded modules through the retargeted SYMPL
compiler. (This includes, of course, the SYMPL source output from the
GENESIS program.) This activity results in one relocatable object module for

each source module.
2.5.8 INTEGRATION

Once the recompilation is complete, the rehosted object modules must be linked
on the new host with the compiler executive modules and formed into an executable
program. This integration is as complex as the compiler overlay structure and
the formats of the relocatable object module required by the link editor. This can
range from relatively straightforward on the IBM 370 to quite complex on the
UNIVAC 1108. The integration activity also includes some minimal testing to

verify the correct working of the major compiler interfaces (source input, object

output, intermediate file I/O, debugging, etc.




2.5.9 TESTING

The final step is the verification of the rehosting. One (or more) of the possible
target machines is selected as the verification machine. For greatest conven~
ience, this should be the host itself, although this may not be possible because
rehosting does not imply retargeting to the same machine. (SYMPL must be
retargeted, but the J-3 compiler itself neel not be.) Typically, this verification

is achieved using a set of standard tests such as the JCVS series.
2.6 SUMMARY

JOCIT is best described as, first, a compei~nt and serviceable J-3 compiler for
the HIS-6000 GCOS machines and, second, a J-3 compiier-building tool. The
advantages of JOCIT are:

® Compiler efficiency
® Object code efficiency

® Good diagnostics

® Excellent debugging facilities (both for the user and maintenance
team)
° Moderately convenient retargeting

° Use of quick bootstrapping SYMPL compiler tailored to JOCIT

needs

The disadvantages are the:

(] Size of the compiler
® Changes necessary to make retargeting even less costly
® Changes necessary to make rehosting less costly (2 moderately-

complex task)

® Reliance on a separate SYMPL compiler that does not take advantage
of the JOCIT compiler's own optimization power and requires sep-

arate (although rare) maintenance.
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SECTION 3 - STATISTICS GATHERING PACKAGE
FOR THE JOVIAL LANGUAGE (JLMT)

3.1 BACKGROUND

An approach to gathering statistics for the JOVIAL J73 language is discussed in
the Final Technical Report RADC~TR~73-381. This report provides guidelines
for measuring JOVIAL principally in terms of usage of features. From these
data, ways may be inferred to improve both the language and its compilers. The
report asserts that little has been done historically in objective analysis of lan-
guages and their use, and it suggests that a rational approach is badly needed to
solve the problem of making languages and compilers truly responsive to meas-

ured needs.

The study of statistics-gathering for J73 was done against a somewhat moving tar-
get since the J73 definition had not completely congealed. Furthermore, there
was no J73 compiler available to aid the report writers in supplementing their

assertions and methodology with objective data gathering.

The report stresses three principal elements of what the authors call the meas-

urement process:

° Understanding the requirements for measurement and establish-

ing meaningful goals for measurement

® Defining precisely what data are to be gathered, what statistics
are to be derived, and what methodology is to be used for acquir-

ing the data
® Statistical analysis of the data, conclusions, and resulting action
The following benefits accrue from measurement:

[ There accumulates an objective basis for language revision; i.e.,

unused features may be deleted, heavily used features may demand

3-1

i




optimization concentration, and error-prone features may be

simplified or modified

Within a given application environment, the analysis of language
features (aensity of usage, proneness to error, etc.) helps to
determine how effectively the language satisfies the application

requirements
Gathered data may stand to contradict intuitive biases

User performance profiles may indicate where optimization has

its highest payoff

User diagnostic summaries may show poorly described or inherently

difficult language forms which may result in improved documentation

Diagnostic and program failure statistics may be quite useful for
programming management to determine how better to allocate
resources when, for example, the data reveal that certain pro-
grammers or programming problems show a too-persistent error

rate

Throughout the report, the authors use JLMT (JOVIAL Language Measurement

Tool) to refer to the model of the statistics-gathering package they describe.

JLMT has not been implemented; however, RADC is building a J-3 JOVIAL static

statistics gatherer to be run under GCOS on J-3 source modules. It is a stand-

alone system that duplicates much of the JOCIT J-3 compiler syntax analysis

function, but does not use any of the JOCIT program.

3.2 ANALYSIS OF JLMT

In analyzing the JLMT approach, Final Technical Report RADC-TR-73-381

describes and assesses the following aspects:

Determination of which data are to be collected
Data analysis

Data collection techniques and implementation approaches
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The report provides more of a philosophical position; it establishes rough guidelines

rather than a blueprint for a JLMT implementation. It is at least one step
removed from providing a set of functional specifications for a realizable statis-

tical gathering system.
3.2.1 DETERMINING DATA TO BE COLLECTED

The bulk of the report (Chapter 3) discusses the kinds of data it is most desirable
to collect. Included are remarks about how the data might be analyzed for maxi-

mum utility. The report identifies three useful classes of data collection:

) Static language usage profiles
° Dynamic user performance profiles
° Compiler performance profiles

These are discussed in the following paragraphs.

3.2.1.1 Static Language Usage Profiles

Static profiles are determined by analyzing source programs and collecting sum-

maries of language usage. The report deals with three kinds of data:
® Rur/control information (programmer ID, program ID, etc.)

° Statement statistics (categorizing by statement type, count of

symbols, count of blanks, etc.)

° Compilaiion statistics (size of object program generated, sum-

maries of keywords used, errors, etc.)

The data may be collected meaningfully only by a suitably instrumented compiler.
Only a compiler, for example, can determine the size of the object program gen-
erated. However, it is quite conceivable to gather statement statistics with a

stardalone analyzer.

As a guideline for designing a JLMT, the report identifies a number of particu-
lar kinds of data that might be collected. Some of these are clearly desirable:

for example, statement type, BEGIN-END nesting at statement, categorizing
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table declarations, and count of referenced external symbols. Others, however,
seem of marginal utility or are categorized improperly; LOC, ALL, NWDSEN,
SHIFT, and DSIZE, for example, are unlikely to be library routines as they sug-
gest; what the report calls "User Functions' is not defined;: DEFINE is improp-
erly classified as a directive; the "size'" of a DEFINE formal parameter is not of
any interest in a DEFINE statement, since it is by definition limited to a single
character; "number and complexity factors in IF statements' is quite vague; and
the collection of ""pair-wise combination of statements' statistics would greatly

inflate the volume of data with a doubtful return in utility.

A large part of Chapter 3 of the report is devoted to bar charts of comparative
statistics of different kinds of language form usage. These demonstrate how

statistics might be displayed most usefully for analysis. (Since these charts seem

to be derived from an actual data gathering activity, but the authors do not reveal
the source, it is assumed that they are largely intuitive and given for purposes

of exemplifying display techniques. )

In presenting their ideas on the gathering of compilation summary statistics, the
authors present a large list of suggested categories. While largely complete,
certain items have been omitted: for example, number of instructions generated
by instruction mnemonic, number of compiler-generated temps, and count of
optimizations performed by type (redundant computations eliminated, branches

deleted, code moved, operators reduced in strength, etc.).

3.2.1.2 Dynamic User Performance Profiles

By far, the most demanding aspect of language usage measurement is dynamic or
execution statistics collection. There are two distinct problems: (1) gathering
the data, and (2) storing the data for subsequent retrieval or analysis. The
report presents a short list of execution statistics to be gathered. Both timing
and count/frequency data are considered. Timing profiles, where the time is
shown as a percentage of total execution, are extremely important for identifying

which language constructs, library routines, and user routines are the best
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candidates for optimization (optimization is used here in the general sense; it
does not refer exclusively to compiler-performed optimization , but includes such

items as restructuring user algorithms and tuning of library routines).

Relative frequency of dynamic usage of routines seems to be less important than
timing data. A routine may be entered quite often but may use little execution
time; the question is , how does one respond to this knowledge? Dynamic fre-
quency of language feature usage is, however, important when compared against

error propensity for the feature.

The report also addresses a miscellaneous category of statistics including termi-
nation conditions, table sizes reached, etc. The inclusion of data on compiler
table sizes in this section is clearly misplaced since it is irrelevant to user
performance profiles. A discussion of error reporting during dynamic analysis
is omitted from the report. Identifying error propensity by language form is an
important correlation. Of course, the objective of identifying such a correlation
is to refine the language and its documentation and/or language courses. A
straightforward correiation - for example, BYTE functions produce a high per-

centage of execution failure - may be impossible to achieve.

The report also mentions averages such as table size. It is difficult to see how
such information could ever be useful; distribution of table sizes would seem to be
more important. The fact that the average table size is 150 is less important
than the fact that less than 2 percent of all tables exceed a size of 200. In this

case, however, it is not clear how the data in either case can be useful.

The report is not clear on how table sizes are to be measured. Clearly, a 100-
entry table compiled for the CDC 6600 may occupy fewer words than on the IBM
370, and the analyst must know what the function of this statistic is. Is the ana-
lyst to be concerned with the dimensions in the abstract or with its actual storage

requirements in the running object program ?
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Finally, the size of a table is not necessarily described as measured by the
maximum index reached during execution. In order to make this data intel-
ligible, it should be supplemented by information describing density of table
occupancy. For example, an array might reach an upper bound of 10,000, but be
only sparsely occupied; it might be misleading to declare that the size of such an
array is 10,000. Instead, where storage size is a problem, the fact that the
array is sparsely populated might lead to the conclusion that it be more efficiently
implemented as a hashed list. Determining density of arrays is a good deal more
difficult than identifying the maximum subscript. In all events, table size must

include the effects of preset data, which further complicates the problem.

3.2.1.3 Compiler Performance Profiles

The report describes the kinds of desirable compiler performance data in order
to obtain an objective basis for compiler efficiency improvement. The most
critical measure - assuming that real performance is not attempted until the
compiler error/failure rate is reduced to very near zero - is the execution
profile; i.e., where is the majority of compile time spent and what are the data
requirements of the largest phase ? Of course, obtaining compiler execution pro-
file data is not unlike that of obtaining user program profile data; the same arti-
facts may be used, especially if the compiler is written in its own language and
self-compiled. For example, upon discovering that a significantly large percent-
age of compile time is spent in a particular routine, the routine may then be sub-
ject to various kinds of tuning and manual optimization (including perhaps rewrit-

ing in machine code).

The report seems to imply that a typical compiler often spends a large percent-
age of its execution time in parsing and backtracking. However, this is not
indicative of all compilers. In fact, a compiler that spends 35 percent of its
execution in its parsing and backtracking may be a good candidate for redesign
without further investigation. By itself, such a figure is not very useful; perhaps
the compiler does no optimization or only primitive code generation in which case

35 percent in parsing is probably irreducible.
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The report provides some useful curves of compiler performance:

® Compilation time per statement as a function of source program
size
° Compilation time per statement as a function of statement size
. ® Size of object program generated as a function of source piogram
size

These curves are extremely interesting; however, responding to them may be
difficult and costly. A curve that shows decreasing compile speed with program

size probably represents a fundamental design problem that perhaps only a pew

compiler can correct. Of course, that information is useful in itself.

The following data in graphic form would be useful supplements to the list:

® Core occupancy of the compiler as a function of source pro-

gram size

° Core occupancy of the compiler as a function of compiler options

(listings, optimization, etc.)

A

° Compilation speed per statement as a function of selected options

P &

@ Size and number of scratch files generated as a function of source

program size and options
¢ 3.2.2 DATA ANALYSIS

For the gathered data to be useful, it must be collected, subjected to various

statistical processes, and displayed. The report asserts that at this point, the

5 analyst's intuition comes strongly into play; once the numbers are before him,
his insights are tempered by the figures, resulting in a more sensible analy-

& sis. In Chapter 3, various kinds of displays are suggested. To aid in the

T
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analytical process, the report suggests many kinds of displays of reduced data.

The most useful are:

L] Histograms of static language feature usage

° Histograms of dynamic language feature usage

® Histograms of functional segmentation of program execution
o Plots of error persistence

® Plots of compile time per statement versus statement length,

source program Size, etc.

The report also considers a little-explored aspect of language evaluation: cost/
performance ratios of various language forms. Similarly, examination of sta-
tistics may lead to an objective measurement of the suitability of a language to

its application. The report suggests that the following kinds of computed ratios

are useful in this analysis:

® Development cost versus frequency of usage for language features
@ Ratio of errors to usage by language feature

® Ratio of errors to program size

® Ratio of error persistence to program size

The report discusses the difficult area of program transferability. It is sug-
gested that a proper analysis of the data may lead to an inference about program
transferability. It is further pointed out tnat the heavy use of DEFINE param-
eters and a low incidence of DIRECT code may be correlated with more ready
transferability. The report clearly warns that the measurement for transfer-
ability is uncertain at best; CSC concurs. Programmers often rely, perhaps

quite unwittingly, on characteristics of the target-machine hardware.

Obviously, defined entry tables are disastrous to portability. Less obviously,
reliance on unary minus to yield a logical complement is similarly unfortunate.
Parameterizing number precision is good theoretically, but is extremely diffi-

cult to realize without resorting to multi-precision internretive arithmetic to
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guarantee machine independence. Programmers are as apt to be guided by the
objective of program efficiency as by portability, which results in many hidden

impediments to transferability.

An analytic tool (described in Chapter 3 of the report) that seems to hold consid-
erable promise is the appending of an execution histogram to a source listing of
the program to be measured. This is of importance in analyzing program or sys-
tem performance, to find unused code, and to identify and then tune program
bottlenecks. Creating such a display is a difficult task and would require a
thoughtful integrated design approach that the authors of the report do not address

further. This problem is addressed in subsequent sections in this study.

¢}
(8

2.3 DATA COLLECTION

3.2.3.1 Hardware Instrumentation

Do

The report discusses the use of hardware instrumentation 10 achieve event count-
ing and program sampling. This is clearly the most difficult approach to data

gathering for several reasons:

® Cost of equipment
] Cost of setup for measurement
° Reliance upon implicit knowledge of system organization in terms

of table formats and addresses of critical data and routines

® Lack of transferabi.ity of techniques to other machines

The advantage of hardware instrumentation is primarily to reduce the cost of
obtaining the data, since it offers the least perturbation of the system perform-

ance while measurement is in process.

3.2.3.2 Preprocessor Approach

The report discusses at length a technique of building a preprocessor to analyze
the source JOVIAL program, gather the static data, and instrument the source by

modifying it in order to generate calls to data gathering routines during execution




B

Another idea mentioned is to intercept command invocation of the JOVIAL com-
piler and enter the preprocessor instead, then call the compiler with the mod-
ified (instrumented) source. This approach seems reasonable since inserting
these same functions into a JOVIAL compiler so large and sensitive to tampering
really is impossible. This approach cannot be completely rejected: but instead of
intercepting the compiler invocation, CSC suggests integrating the preprocessor
with the compiler under a single executive with a control program to manage the
sequence of execution. This method would achieve the desired end without dis-

turbing existing code.

3.2.3.3 Super Compiler Approach

The alternative to the preprocessor approach is to modify the existing JOVIAL
compiler to perform the same functions. The JLMT report calls this modified
compiler a super compiler. This approach carries the obvious advantage of
eliminating duplication of work. Thus, the preprocessor must perform many of
the same functions as does the compiler front-enc, and the preprocessor cannot
gather certain important compilation statistics which still would have to be

obtained by modifying the compiler itself.

If a standard compiler is to be implemented for the LCF, then part of this stand-
ard should be the statistics gathering function. This objective is then more
directly achieved by incorporating the statistics gathering functions directly into
the standard JOVIAL compiler. Because this allows rehostability of this element

of the measurement tool, CSC greatly favors this approach.

3.2.3.4 Software Instrumentation

The suggested method of instrumentation is to modify the source code to insert
calls to measurement subroutines. This is the cheapest approach to implement,
but it does present some difficulties, such as the necessity to insert BEGIN-END

brackets where they were not originally required. For example, the statement:

IF cond; XX = XX + 1
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is instrumented to record the execution of the assignment statement, Clearly,
IF cond; MEASURE(...); XX = XX + 1

has altered the meaning of the program. The required bracketing is:
I cond; BEGIN MEASURE(...); XX=XX +1; END

Another disadvantage to source language instrumentation is that great numbers
of parameters must be passed in order to achieve the collection of the kinds of

data suggested in the report.

An alternative to the source language insertion technique (not discussed by the
report) is to build the instrumentation into the intermediate language. This is
the approach used in most compilers to effect the MONITOR statement. While in
itself this docs not reduce the requirement for parameters, a more integrated
approach to instrumentation does. For example, the compiler may build a state-
ment descriptor table for each statement which contains encoded forms of the
necessary parameters. Using this approach, the call to the measurement rou-
tine needs only a single parameter to identify the statement descriptor table
entry. The measurement routine call might not have to be made. Instead, exe-
cution of the program proceeds in a partially interpretive mode with a control
monitor obeying the sequence described by the statement descriptor table and
collecting the data during the interpretation. Although interpretation is usually
avoided, the inscrtion of measurement monitoring as alterations to the source
has much the same effect ir. degrading program performance and bears the addi-
tional cost of greatly enlarging both the source and object programs (perhaps
beyond manageable limits) thus defeating the approach.

The report addresses the problem of data recording only superficially. The prob-
lem of data recording must be considered as part of an integrated statistics gath-
ering design. The suggested approach of generating in-core tables of data to

survive from compilation through link-editing and into execution is too delicate
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to be practical. It requires each of the processors (including the data analysis
and reduction programs) to have inherent knowledge of fixed locations for the
data and, of course, eliminates the possibility of separate jobs for compilation,

link-editing, execution, statistics gathering, and analysis.

A more modular approach, which still requires modifications to the compilers
and link~editors but leaves the programs largely independent, is to define file
structure conventions for the storage of the data. (See Section 8 of this volume
for a suggested avproach.) Statement descriptor files and static statistics files
can be produced as a compilation output in much the same way that relocatable
binary files are output. Similarly, the link-editor creates composite statement
descriptor tables and statistics tables, which may be written to files. When
executing in the statistics gathering mode, the interpreter (or called library
routines) may generate additional files. Finally, the data reduction programs

should have access to these files to collate, summarize, and display for analysis.

Some consideration should be made for choosing either file replacement or file
appending as the normal mode. Statement descriptor tables clearly replace any
earlier version, but compilation statistics may be appended more properly to
earlier statistics for the same program (the approach may be to use the IBM~
style generation tiles for this purpose). For example, the "append'" option

allows analysis of items such as error decay with program life.

For maximum utility to programmers, language designers, project supervisors
and installation managers, the method of data reco :ding and the convenience of
its subsequent retrieval for display and analysis is probably the most important

design consideration. The JLMT report treats this subject minimally.

3.3 CONCLUEIONS

The report succeeds in identifying useful categories of statistics to be gathered.
It is a helpful document in defining broad requirements in the area of language

measurement. It does not, however, progress to the point of defining functional
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specifications for a viable system. In particular, the notes on implementation

consist more of speculation than concrete proposals and too much detail is pre- ;

sented on the preprocessor approach. The most important shortcoming is the
failure to specify a rational, integrated approach to data recording with a descrip-
s tion of the interfaces among the principal elements of the measurement system.
Indeed, the elements themselves are not clearly identified. A language measure-
ment tool would satisfy a real need in the LCF. In Section 11 (statistics collec-
tion for the LCF) the omissions noted here are addressed and corrective meas-

ures are recommended.
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SECTION 4 - JOVIAL COMPILER VALIDATTON SYSTEM (JCVS)

4.1 DESCRIPTION

The JOVIAL Compiler Validation System (JCVS) was implemented to provide a
standard method for verifying that all JOVIAL compilers implemented for the
Air Force meet the requirements as set forth in the JOVIAL standard defined in
AFM 100-24. Two such systems have actually been implemented: one for

JOVIAL/J-3 and another for JOVIAL/J73 language and its subsets.

The J-3 JCVS has been used to measure most existing J-3 compilers on several
different machines, including the JOCIT J-3 compiler for the HIS-6000/GCOS
system. The J73 JCVS has been used to validate the J73/I compiler imple-
mented for the DECSYSTEM-10.

The JCVS is constructed as a set of JOVIAL source language statements organized
into functional modules, each designed to exercise a specific feature of the lan-

guage. They are divided into six classes:

L Class 1 - Language Features
® Class 2 - Error Detection and Reporting

° Class 3 - Capacity

® Class 4 - Efficiency

® Class 5 - Machine/Implementation Features
° Class 6 - Generalized/Other Tests

The tests are constructed systematically to measure each feature independently
in an exhaustive set of variations. The tests are organized with a large set of
declarations common to all the tests. In addition, target machine characteristics
are parameterized, and certain subroutines that generate printed results and
analyze success and failure are provided as common routines. The tests are
further annotated to a considerable degree in the form of source language
comments. A manual describing the tests and their use provides the documenta-

tion that supports each of the JCVS sets.
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The tests are constructed so as to be entirely self-checking. They are designed
so that a commentary briefly describing the test is printed before an announce-
ment of success or failure. The output of each test further identifies the module
to provide a cross-reference both to the JCVS source listing and also to the docu-
mentation describing the tests. The common declarations and routines and the

individual modules are maintained in a large source text library.

It was the original intent in the design to provide a test construction facility in
which the test preparer would identify the modules to be selected, and a complete
test program - in the form of a single source module - would be generated auto-
matically. This design was realized for the J-3 JCVS but was not realized for
the J73 set. The J-3 test constructor was written in COBOL, and was imple-
mented under GCOS; the J73 test constructor was not actually implemented. To
some degree, the test construction facility may be duplicated, although with less

convenience, with the services of standard text editing facilities.

The tests for both J-3 and J73 consist of several thousand lines of source code
and are quite comprehensive. Both the JOCIT J-3 compiler and the
DECSYSTEM-10 J73/1 compiler underwent an exhaustive test cycle of self-
checking tests prepared by the contractor. Upon completion of this level of
system testing, final testing and acceptance of the compilers consisted of suc-
cessfully exercising the JCVS tests. An additional level of validation was
achieved in the J73/I compiler by writing it in its own language; self-compilation

was included as a further measure of successful implementation.
4.2 ANALYSIS

The principal value of the JCVS tests is that they have been prepared entirely
independently of any compiler implementation activity. They have been written
to exercise the language constructs as defined in the language standard specifi-
cations. This adds a level of objectivity to the validation/acceptance activity
that is not readily obtainable when the iesting is left solely to the compiler

implementers. Systematic testing by the implementers is not precluded by the
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JCVS tests. On the contrary, the contractor’s own testing activity is designed
to bring the compiler to a state of readiness, after which the application of the
standard JCVS tests serve to certify it for release and production service.
Another of the virtues of the JCVS tests is that the tests are organized into func-
4 : tional isolation, and failures that they manifest are readily identifiable, thus
shortening the analysis and correction cycle considerably. The tests are quite
disciplined in avoiding inter-module dependencies that would make the analysis

more complex.

AltLiough the JCVS tests have been designed to test the JOVIAL language exclu-
sively, the principles of test development are readily adaptable to any other
language. The JCVS concept was judged to be outstandingly cost-effective and

a generally excellent tool for measuring the success of compiler implementation
efforts. While the existing JCVS tests are JOVIAL-based, it is realistic to expect
that much of the tests would submit to language translation for adoption to non-
JOVIAL HOLs. Of course, the translated tests would have to be supplemented by
additional modules to measure language features not part of the JOVIAL languages,
and certain modules would be deleted as inapplicable. Nonetheless, the guidance
offered by the existing tests should aid significantly in reducing the effort to

prepare validation measurement for other languages.

Both the J-3 and J73 JCVS tests exhibit some shortcomings. Correcting these
would further enhance the suitability of the tests in supporting a JOVIAL-based
LCF. These shortcomings are both minor (in general easy to remedy) and major

(correction would require significant effort).

The minor deficiencies primarily result from insufficient testing of the following

features:

® Input/output

° ENCODE/DECODE
@ MONITOR/TRACE i
® BIT, BYTE, and ENTRY assignments and relationals

® Optimization
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The major deficiencies may be further divided into those that result from a lack
of testing and those which are simply procedural. One area, not tested adequately
by JCVS but very important to the normal user of JOVIAL, consists of those
aspects of the language and compiler related to system construction and integra-
tion. In particular, the tests fail to exercise the COMPOOL capability for
describing external data, initialization of COMPOOL data, declaration of external
procedures/data and their attributes; the capability to generate linkable, sepa-
rately compiled modules; and the interface with other system programs and
libraries. Undiscovered errors in these areas are left to the unsuspecting user
to find. A similar area is left for the user to detect results from feature inter-
action. Although the JCVS tests perform an excellent validation of independent
features, the difficult and lengthy phase of compiler verification is that which
involves detection and correction of errors as language constructs interrelate.

Some brief examples follow:

° Procedure calls may work independently, and formal parameter
usage may work independently, but the call mechanisn: may fail when

formal parameters are passed as actual parameters

® Parallel and serial tables may work independently but fail when used
together
° Recursion with dynamic storage allocation is always a menace

® Optimization is often thwarted by overlaid data, COMPOOL data,

and improperly analyzed program flow
L] Initialization of compiler-packed and like tables

This form of testing is complex and is best performed by real programs. Com-
pilations of the compiler itself have been an excellent method to discover errors
resulting from feature interaction, but not all compilers are self-compiled
(JOCIT, for example), and additional tests which are organized especially to

test these interactions should be designed and included.
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The procedural deficiency lies in the absence of a cataloging index to the tests
and test modules by feature. With such a catalog and an automated means of
assembling the desired modules, the test could prove to be much more useful

for phased testing during compiler development. The J73 JCVS assists somewhat
in providing appendixes to the user's manual to cross~-reference language

features and test modules.

4.3 CONCLUSIONS

With some enhancements, discussed in Section 12, the JCVS tests for both J73
and J-3 provide a useful basis for compiler validation in an LCF supporting these
languages. The automated test construction facility should be strengthened to
give greater convenience to both the development testing activity and also the
acceptance testing activity. The JCVS concept is an equally useful base from

which to develop validators for other HOLs.
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SECTION 5 - JOVIAL AUTOMATED VERIFICATION SYSTEM (JAVS)

5.1 DESCRIPTION

The JOVIAL Automated Verification System (JAVS) is a tool designed to assist
in developing programs written in JOVIAL/J-3. The primary purpose of JAVS
is to aid the programmer in testing. JAVS is a program that operates on
JOVIAL/J-3 source programs. The programmer may employ JAVS when his
programs have compiled successfully without error and have demonstrated that
they may be executed through a minimal path successfully. At that point JAVS

can rrovide the following services:

° Analyze and format the source text

° Perform flow analysis

) Insert instrumentation for performance measurement
® Describe inter-module relationships

@ Generate test measurement results

JAVS is deseribed in two documents: the User's Guide and the Reference

Manual. The program operates on the HIS-6000 under GCOS. It is divided into
six separate functions known as STEPs, which are invoked by means of a control
language described in the documentation. JAVS operates on JOVIAL/J-3 source
modules and requires the services of the JOCIT JOVIAL compiler to create
executable modules. JAVS assumes certain implicit knowledge of the particular
J-3 language processed by JOCIT; namely, it employs the MONITOR statement,

as explained in paragraph 5.1.3, Instrumentation. The functions provided by JAVS

are described in the following paragraphs.
5.1.1 ANALYZE AND FORMAT SOURCE TEXT

This process is known as STEP 1 in the JAVS system. During STEP 1, the
JOVIAL program is read, and various tables are created for subsequent process-

ing by later steps. In addition, the user has the option to produce various kinds
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of listings of his program with supplemental annotation. This step is similar to
the syntax analysis phase of a compiler, and in fact, it duplicates many of the

3 functions of such a phase. JAVS diagnoses incorrect programs to some degree,

and advises the user when certain JAVS limitations and capacities are violated.

(One such limitation is that character variables may not exceed 120 characters.)

The programmer directs JAVS partially through the inclusion of special com-

ments in the source. These are ignored by the J-3 compiler, but are recognized
by the JAVS program. Such information as module identification, or COMPOOLs

to be referenced are inserted by the programmer.

A large variety of listings may be obtained from the JAVS system. The most
useful of these show the source text reformatted with indentation for BEGIN-END
blocks, JAVS-assigned statement numbers, etc. There is also the option to
show expanded DEFINE name references. Many of the supplemental listings
(such as the statement descriptor table) are intended for JAVS maintenance, and
are of marginal relevance to the programmer's testing effort. The primary out-

put of STEP 1 is the module descriptor table required by subsequent steps.
5.1.2 FLOW ANALYSIS

Flow analysis is described in JAVS terminology in terms of decision-to-decision
paths (DD-paths). Basically, a DD-path is the code that occurs between one con-
ditional branch and the next. The flow analysis is performed by STEP 2 and
generates tables (into the JAVS library) for use by subsequent steps. The flow
analysis is expressed in the form of descriptor tables which may be processed by

JAVS report-writer functions to generate annotated listings of the program text.

STEP 4 is also used to provide flow analysis information. Its output is entirely

in the form of detailed reports, any one or all of which are selectable during

STEP 4 processing. Detailed analyses of DD-paths are available in several forms
including an annotated source listing showing just the source text for the deci-

sions, a stylized graphlike listing showing the reach of each DD-path and, of




considerable interest, the summary listing of each statement by type (procedure,

assignment, IF, etc.) and the DD-paths containing the statement. STEP 4 also
provides the facility to generate a cross-reference list of the modules contained
in the user's library. This function duplicates that of the JOCIT compiler but
provides a composite listing while omitting such data as variable type, scope,

etc., which are provided by the JOCIT compiler.
5.1.3 INSTRUMENTATION

STEP 3 performs instrumentation of the source module. STEPs 1 and 2 will
have been run before STEP 3. The steps are not sequenced automatically as
are the phases of a compiler; the step selection and ordering are controlled by
the progranimer. If something is wrong or out of proper sequence, JAVS gives
notice. Instrumentation is implemented through the use of JAVS directives,
which are special JOVIAL comments. Unfortunately, the JAVS documentation
does not describe the syntax of the special comment; one is left to infer that what
makes them special is the occurrence of a dot ('."') as the first character of the
comment. The effect of blanks is not discussed, and in general, the user is not
advised or cautioned about how his program commentary might unwittingly be
processed by JAVS. There are three main forms of instrumentation: flow

tracing, variable assignment tracing, and value verification.

Flow tracing includes subroutine entrance/exit tracing, and DD-path tracing.
Asking for these causes JAVS to insert JOVIAL statements that call predefined
subroutines (in the required special JAVS COMPOOL) that build JAVS tables
during execution to record the trace data. These tables are then processable by

elements of the JAVS system (STEP 6) after execution for analysis.

Variable assignment tracing is implemented by making use of the JOCIT compiler
MONITOR featurc. Asking that a variable be traced causes JAVS to insert an
appropriate MONITOR statement. Such tracing may also be turned off by includ-

ing a JAVS-generated Boolean variable as the conditional expression in the
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MONITOR statement. These JAVS-generated variable names may conflict with
programmer names; the programmer discovers such duplication only after
compiling the program with the J-3 compiler. Value assignment tracing is not
inserted into the JAVS files for subsequent analysis; instead, it appears as part
of the standard print file output. Writing the trace directive, however, is some-~
what simpler than the corresponding MONITOR statement if both ON and OFF
irace functions are desired: if only the ON function is desired, the MONITOR
statement is equally as useful. Of course, the JAVS directives, appearing as
comments, do not generate code when the original source text is compiled withort

JAVS pre-processing.

Value verification is useful to the programmer. It allows him to specify - again,
in the form of a directive - what values, or range of values, a variable is
expected to contain at selected points in the program. (The selected points are
those at which the directives appear.) These directives, known as ASSERT and
EXPECT, also generate MONITOR statements that produce output only when

the assertion is false or the expectation is not fulfilled. The output goes only tc
the print file, similar to the value tracing; JAVS does not intercept the informa~

tion for its own purposes.

The output of the instrumentation step is a new J-3 source program with the
inserted subroutine calls and MONITOR statements included. This program must
be compiled by the JOVIAL compiler as a step separate from and independent of

the JAVS system.
5.1.4 INTERMODULE RELATIONSHIPS

JAVS is usefully oriented to verification of systems employing multiple modules.
STEP 5 of the JAVS system generates reports and listings that describe the
called and calling relationships among programs in the user's set and with the
library as well. The only limitation to the usefulness of this step is the number

of modules that can be named (vertically) across the printer page (115 is the
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JAVS limit). One report, which appears to be most useful in integrating multiple-
module systems, is the hierarchical module diagram. Unfortunately, only ten
levels are supported, which seems inadequate for describing real, well-structured

programs.
5.1.5 TEST MEASUREMENT

After a JOVIAL program has been processed through STEPs 1-5 and then com-
piled and executed, STEP 6 of the JAVS system is employed to assist in post-
mortem analysis. Instrumented flow-tracing data will have been recorded by the
JAVS object-time subroutines in the JAVS library. This data is not retrievable

by STEP 6 and may be formatted into any of several reports.

Of primary interest to the programmer is to observe how much of his program
has not been tested. JAVS usefully segregates its trace output by separate execu~
tions of the instrumented program, such that statistics for any particular run or
cumulative statistics for all runs are available. The cumulative statistics show,
for example, which DD-paths were not exercised. Such information may be
reported in tabular form or as an annotation to a reproduced listing of the original
source text. This is an cxcellent concept, and it cannot be difficult for a pro-
grammer to use such an annotated listing and quickly identify the DD-paths that
were not exercised, and relatively quickly (depending upon program complexity)
generate another test or set of tests to cover the unexercised paths. Useless
code as well as improperly written conditional statements may be discovered by

such an analysis.

In addition to these summaries, STEP 6 also provides a step-by-step trace of
each DD-path, showing the branch condition or switch path taken. Finally,
execution-time summaries by module are available, although it is not known to
what degree these timings are skewed by the timer function itself, implanted
instrumentation, etc. Very little is said about the timing summary; this part of
the manual should be augmented because timing is usually critical in real systems,

and effective measurement would aid in their development.
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5.2 ANALYSIS

JAVS has been developed expressly for the JOCIT/J-3 language as implemented
on the HIS-6000 machine under GCOS. Oriented to that language, JAVS appears
not to be directly transferable for use with other languages. Although the docu-
mentation does not mention it, discussions confirm that JAVS is implemented
only for the JOVIAL/J-3 language. Therefore, CSC concludes that it would

require substantial effort to redevelop JAVS for some new language.

However, some aspects of the design do have readily portable characteristics,
such as module instrumentation. For example, the flow tracing, ASSERT, and
EXPECT directives could be implemented somewhat similarly for J73 through
use of the ! TRACE directive. The JAVS architecture and file interface design
also appears to accommodate multiple languages. What is not known is the
degree to which the internal tables are specifically oriented to J-3. By inference,
there is some orientation because of the way statements are classified (for
example, "IFEI" or "GTCL", which have no direct counterparts in other lan-
guages), and this would demand some retailoring for new languages. As such,
JAVS may not be considered in the category of language-independent tools. How-
ever, the concepts are valid for other languages; especially in the area of post-
mortem summary analysis, JAVS points the way to a useful program development

aid in the LCF.

The major advantage of a JAVS-like tool is its application to multimodule sys-
tems. Large programming systems are invariably complex in organization, and
as structured programming techniques become more widely applied, the ability
to deal with multiple modules will be a major requirement at all points in the
program development spectrum. As described in the documentation, JAVS
addresses the problem, but perhaps falls short in its capacities. Real systems
may be expected to contain several hundreds (perhaps thousands) of modules,
and it is not clear from the JAVS description whether or not the table capacities

may be expanded to meet such a need. Furthermore, the documentation does
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not make clear exactly what a module is. By inference, a module must be a
source unit of code that defines either a main program or an external procedure,
both of which may contain any number of internal procedures. If JAVS assumes
earh procedure to be a module, then the stated capacities present an even more

serious restriction.

The control language for driving JAVS is somewhat verbose, and the division

into steps seems more oriented towards the JAVS program architecture than to
user convenience. STEPs 2 and 4, for example, are not meaningfully distinct

from the user’s {functional viewpoint, and verhaps could be consolidated to make
the user interface simpler. In fact, requiring the user to divide processing into
JAVS steps at all seems unnecessary. What the user wants is (1) to generate
annotated listings for flow (DD-path) identification, (2) to produce formatted list-
ings (if the compiler cannot do it for him), (3) to instrument his program for exe-
cution measurement. and (4) to have access to postmortem analysis facilities. It
secems that a much simpler and more direct control language - not ST EP-oriented -

would fulfill these basic requirements in a more useful way.

A point of concern in measuring large programs is that JAVS instrumentation may
be expected to add considerable volume to the generated code. The procedure
calls for flow-tracing and thc MONITOR statements consume both ccrupile-time
and run-time resources that may make measurement difficult, if not impossible.
Of course, a stand-alone JAVS can hardly avoid the choice of source-language
instrumentation. The only alternative is for the compiler to provide some
encoded output that is processed by a run-time monitor to insert the probes at

the machine language level. However, this approach defines an entirely different

discipline not attempted by the JAVS developers. This problem coupled with the

capacities problems restricts JAVS applicability to large program development.

-
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5.3 CONCLUSIONS

As implemented, JAVS is relevant only in a J-3 LCF. It is quite useful in ver-
ifying and developing tests for medium scale programs. Its strongest feature

is the postmortem analysis aids, which include both selected run and cumu-
lative execution data. Users of JAVS may find that instrumented programs are
considerably larger than the uninstrumented ones, and therefore performance
measurement results may be skewed beyond usefulness. The performance effect
may be compounded further by the interaction of probe and monitor code with the
application of optimizing algorithms by the compiler. (For example, MONITOR
calls may destroy values held in registers and force temporary stores and reloads
not required in the uninstrumented program.) However, JAVS is a useful com-
panion to the JOCIT J=3 compiler within the scope of a J-3 LCF, and the JAVS

principles and functional design may be fruitfully applied to other HOLs.

The JAVS tool, implemented as a preprocessor, presents the problem of ensuring
and maintaining compiler and JAVS processor language compatibility. A more
economic approach would incorporate the analysis and instrumentation functions
(STEPs 1-5) into the compiler. The slight increase in compiler development

cost and size and the negligible loss in performance are more than offset by the
beneficial elimination of a redundant language processor, the elimination of
language incompatibilities, significant improvement in instrumentation efficiency,

and the guarantee of portability.
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g not make clear exactly what a module is. By inference, a module must be a
source unit of code that defines either a main program or an external procedure,

both of which may contain any number of internal procedures. If JAVS assumes

3 -
E erch procedure to be a module, then the stated capacities present an even more
4 serious restriction.
- § R oo
4 The control language for driving JAVS is somewhat verbose, and the division

into steps seems more oriented towards the JAVS program architecture than to

user convenience. STEPs 2 and 4, for example, are not meaningfully distinct

from the user's tunctional viewpoint, and perhaps could be consolidated to make
the user interface simpler. In fact, requiring the user to divide processing into
JAVS steps at all seems unnecessary. What the user wants is (1) to generate

annotated listings for flow (DD-path) identification, (2) to produce formatt.d list-

ings (if the compiler cannot do it for him), (3) to instrument his program for exe-
cution measurement. and (4) to have access to postmortem analysis facilities. It
seems that a much simpler and more direct control language - not ST EP-oriented -

would fulfill these basic requirements in a more useful way.

A point of concern in measuring large programs is that JAVS instrumentation may
be expected to add considerable volume to the generated code. The procedure
calls for flow-tracing and the MONITOR statements consume both compile-time
and run-time resources that may make measurement difficult, if not impossible.

Of course, a stand-alone JAVS can hardly avoid the choice of source-language

instrumentation. The only alternative is for the compiler to provide some

; encoded output that is processed by a run-time monitor to insert the probes at
the machine language level. However, this approach defines an entirely different
discipline not attempted by the JAVS developers. This problem coupled with the

capacities problems restricts JAVS applicability to large program development.

-1




AR TR S LT RTINS 1104 RN AN 4 L D010 1 o T b A Ty v e e TRy

SECTION 6 - SEMANOL
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6.1 DESCRIPTION

SEMANOL (Semantics-Oriented Language) is a language and a programming
system whose purpose is to describe the syntax and the semantics of certain

classes of languages. SEMANOL was developed with two principal objectives in

o T S I GO e
» .

mind:

v ® A rigid methodology that forces the unambiguous and machine-
verifiable statement of the total semantic effect of the language

under definition

° A resulting definition comprehensible to the reader as a language

specification standard
6.1.1 ORGANIZATION OF A SEMANOL DESCRIPTION

A full SEMANOL description looks very much like a program written in a high-

order language. The description consists of four main parts:

) Context-free syntax description
2, Noncontext-free syntax description
B Semantic description

4. Control section

Part 1 of the description uses a generative grammar much like the Backus-Naur
Form {(BNF). The grammar is written as a set of syntactic definitions, each of
which takes the form of a "production' that defines a single syntactic construct
in terms of other constructs and/or terminal symbols. The definitions may he

recursive in that the construct being defined may itself be an element of the

definition, directly or indirectly. The total context-free description may be

viewed as a tree with a principal construct - say, <program> - at the root




node, and the set of terminal symbols forming the lewest-level branch termini.
The context-free part of the SEMANOL description is the only one of the four

parts that does not have a procedure-oriented appearance.

Part 1, then, forms the total syntactic definition, while Parts 2, 3, and 4 con-
sist of a highly recursive set of procedures and functions which execute as a
sequential machine to mechanize the semantic description. The operation of the
SEMANOL machine is described at the highest level by Part 4, the control sec-

tion. Parts 2 and 3 may be thought of as a set of subroutines of Part 4.

The input to SEMANOL is a particular program written in the language defined
by the four part description. First, the control section causes a parse tree of
the particular program to be constructed using the Part 1 grammar. Next, the
noncontext-free analysis (recognizing undefined names, etc.) is performed by
Part 2. Finally, the semantic effects of the particular program, together with
its inputs, are determined by applying the appropriate semantic description from
Part 3 to ithe nodes of the parse tree in particular-program-order:i.e., the

"execution' of the particular program is simulated in an interpretive manner.
6.1.2 THE SEMANOL SYSTEM

The SEMANOL system is organized into two major components: the translator
and the interpreter. The translator operates on the four part description
(described in the paragraphs above) and creates an encoded intermediate repre-
sentation known as SIL (SEMANOL Internal Language). The SIL is then given

to the interpreter, which performs the execution. This execution produces out-
puts and constitutes the machine verification of the language description. The
thoroughness of the verification, of course, depends upon the comprehensiveness
of the particular program or programs which may be thought of as a set of test

cases for the language.
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The SEMANOL system is written in FORTRAN and operates under the MULTICS : j
system. Execution of SEMANOL is not anlike that of a compiler, except that ”
the execution, being interpretive, is quite slow. Because the system is coded

in FORTRAN, it is alleged to be relatively portable. Infact, the first imple-

i

mentation of SEMANOL was begun under GCOS and later rehosted to MULTICS.

However, because significant changes were incorporated then, a true measure

of rehostability was not achieved.
6.2 ANALYSIS

The study of SEMANOL and the conclusions drawn about it were mostly based on
several existing documents that formally describe both the SEMANOL system,
and two separate language specifications (one for JOVIAL/J~3 and one for
JOVIAL/J73). In addition, the authors of the system gave a presentation on
SEMANOL and answered inquiries during the course of the LCF study. The
SEMANOL system discussed here is the second-generation system, known as
SEMANOL (73), which (1) incorporates changes to correct shortcomings in the
earlier version and (2) specifically supports the writing of the JOVIAL/J73

specification.

The J73 specification itself stands as a useful example for study purpeses, and

it is greatly strengthened by the frequent use of English commentary. An attempt
was made to gain hands-on experience with SEMANOL by exercising the J73
specification. However, this attempt was defeated by the fact that SEMANOL

had become temporarily inoperative because of recent modifications to MULTICS,
which changed the meaning of certain FORTRAN 1/O statements in the SEMANOL
program. It was hoped for a time that the developer would be able to bring up
SEMANOL again during the course of the LCF study, but lack of funding prevented
it. It is unfortunate, because direct experience invariably lends greater dimen-

sion and objectivity.
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Within the framework of an R&D effort, the SEMANOL project has the appearance
of being successful. The documents are quite readable, although a lack of a
tutorial text limits the readership to experienced language specialists. The
authors are clearly knowledgeable and given to very clear expression about their

system. The system they have created appears to be a well-conceived tool.
6.2.1 THE CASE FOR LANGUAGE SPECIFICATION

The evaluation of SEMANOL presented in this section must be understood in the
context of the requirements for language specification within the LCF. Clearly,
the very first step in providing for meaningful language control is to establish an

unequivocal definition of the language in question. Such a definition serves to:

L] Provide a basis for a programming standard for the language users
° Provide clear and unambiguous guidance for compiler implementers
° Create a standard that ensures program portability among the

possible target machines within the LCF community
o Stifle the proliferation of non-standard implementations

The primary issue is the method of achieving these goals in the most cost-
effective manner. There are several conflicting objectives; it is not clear that
a single form serves each equally well, For example, a formal description that
guides a compiler writer is not likely to serve the needs of a less~-experienced
applications programmer. The former requires a formal, rigorous specifica-

tion of the language while the latter needs a well-exemplified, tutorial treatment.

One way to approach a definition is to build a compiler implementation tool that
is truly independent of the target machine. Then the compiler tool becomes the
standard. But there are rational objections to this approach. For one thing,
compilers are difficult to read. The semantic effects are distributed throughout
the compiler phases, the library, and even the link editor and operating system
services. Some argument can be mace that once an implementation standard is

established through such a tool, there is no need for a rigerous specification
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since all implementations are defined by the tool. However, this fails to provide
guidance for implementations of the language outside the community and certainly
fails to provide language users with anything meaningful or readable. Instead,
an implementation standard should be derived from a higher specification that is
subject to analysis and review outside of, and in advance of, any implementation

activity.

In the case of JOVIAL J-3, several implementations failed to achieve a consis-
tent interpretation. Part of the blame for this can be placed on the inconsisten-
cies and incompleteness of the language standard defined in AFM 100-24, but
AFM 100-24 cannot bear the sole responsibility; it can even be criticized for

overspecification in certain cases.

There has been much learned about language design and description since the days
of the JOVIAL definition. What is sometimes criticized as a poor language speci-
fication for JOVIAL is often more accurately perceived as poor language design.
Early vintage HOLs have many characteristics that invite nonstandard usage, that
permit ill-advised access to target machine characteristics, and that otherwise
defeat program portability. It is CSC's feeling that no amount of careful speci-
fication of these languages would significantly ease this condition. For example,
the current mainstream of language design insists on inviolable compile-time
tvpe checking (e.g., the DOD "TINMAN" specification, ALCOL-68, PASCAI) to
which such features as FORTRAN EQUIVALENCE, and JOVIAL specified tables
stand in fundamental contradiction, and which features defy the kind of univers:l

semantic specification that meets the previously stated objectives.

CSC agrees completely with RADC's intent in providing a complete and unambig-
uous language specification for the HOL or HOLs supported within the LCF.
However, CSC questions whether the search for tools to support this goal will
help correct the more fundamental problems with the design inherent in the lan-
guages which RADC might realistically consider for the first LCF implementa-
tion. This is not to say that existing specifications do not merit some concerted

effort to refine their description and at the very least to identify the three
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principal categories of sub-specification, namely, the universally defined, the

undefined-by-this-description, and the implementation-defined.

Earlier, CSC rejected the idea of using SEMANOL in the LCF; but that judge-
ment was largely based on expectations as to which HOLs were the likeliest
candidates for LCF support. These languages (largely, of the JOVIAL family)
simply have such a dense weighting of the undefined or implementation-defined,
that CSC concluded that the application of a SEMANOL approach to language
specification was not cost-effective. The poor cost-effectiveness is largely due
to the necessity to rewrite the implementation-defined semantics for each target
and the necessity to rationalize the undefined such that implementations would
not be judged incorrect because their realization of the undefined differed from
the SEMANOL realization. However, in the next generation of languages the
universal definition overwhelms the undefined and implementation-defined, and
the implementation-defined semantics are at least parameterized to a high degree
through language constructs. Consequently, SEMANOL will serve as a useful

companion tool to the language definers during language definition.

As the following analysis shows, SEMANOL does not serve all the previously
stated objectives equally well. What is more urgently needed is a clear and com-
plete specification for implementers and an equally clear but more tutorial
description for language users, neither of which SEMANOL fully meets, Several
forms of language specification emerging in the last few years hint that these
objectives may be met. Not all are equally successful, but it is difficult to judge
adequately because they have introduced a new technology and vocabulary which
are unfamiliar and often misunderstood. The ALGOL~68 description, for example,
in which the two-level syntax has been emp!oyed to include the context-sensitive
portions of syntax specification (e.g., mating of defining and applied occurrences
of identifiers, detection of equivalent modes, etc.) is a significant achievement,
but it suffers from an impenetrability due almost as much to the complexity and

difficulty of the language itself as to the descriptive methodology .
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The ALGOL-60 description has provided the model for nearly all subsequent

specifications, and attempts to refine it have not alwavs resulted in an improve-
ment. The description of PASCAL1 combines a highly refined language with one
of the most transparent specifications ever written. Based on a BNF-style
formal syntax description and supplemented by semantic footnotes and numerous
examples, the PASCAL Report is a good model for a language description.
However, it is not certain whether the clarity and completeness of the Report
influences an assessment of the language or, conversely, whether the simplicity

of the language is actually responsible for the clear specification.

A final point to be made is that any language specification describes an abstract
machine (Turing machine, Chomsky Type I machine, PASCAL machine,
SEMANOL machine). The problem is to find the machine which is intelligible to
the reader and which can also be '"translated' to a set of real machines using
some readily-derived, minimal set of mapping functions. At this point. only
subjective judgements can be made; however, within an R&D environment, the
technology is best served by experimenting with different forms, one of which is
the SEMANOL form. The following paragraphs examine some of the characteris-

tics of SEMANOL as measured against the needs of the LCF.
6.2.2 OVERSPECIFICATION

The desirability and meaning of an unambiguous specification is open to question.
Certain English-language descriptions have in the past been criticized for over-
specification. For example, JOVIAL J~3 has specified clearly that integers are
to be represented in signed-magnitude format. This specification, if followed
absolutely, would have crippled the implementation effort for all compilers but
those intended for the IBM-7000 series of machines. No JOVIAL compiler,

except that for the signed-magnitude 7094, has ever adhered to this specification.

1Jensen & Wirth, '""PASCAL User Manual and Report,' Springer-Verlag,
Berlin 1974.
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Hoare and Wirth observed: 'Since one of the principal aims in designing PASCAL
was to construct a basis for truly portable software, it is mandatory to ensure
full compatibility among implementations. To this end, implementers must be
able to rely on a rigorous definition of the language. The definition must

clearly state the rules that are considered binding, and on the other hand give
the implementer enough freedom to achieve efficiency by leaving certain less
important aspects undefined. 2 This seems to pinpoint the problem: to identify
"the important aspects.'" It can be argued that, for example, the effect of assign-
ing a value to a variable whose declared range does not include the value should
be undefined. In this case, an optimizer can take considerable advantage of this
in recognizing redundant computations by the so-called 'value-folding' technique.
It can also be argued that such a lack of definition leads to the construction of
wrong programs in which errors arisin {:om undetected truncation are very
hard to isolate. Another, more difficult point, is in specifying the effect of
assignment to overlaid or based variables. For example, in the following pro-

gram is the "correct" output 1 or 2?

OVERLAY x=y;

X =

¥ =y,

PRINT x;
A rational language specification can be conceived to allow 1 as the only correct
answer, or 2 as the only correct answer, or either as the correct answer;i.e.,
within certain constraints, the effect of the assignment is undefined. A SEMANOL
specification can fairly readily mechanize the first alternative, will require a
modeling of the entire storage environment to realize the second, and will proba-~
bly fail to achieve the third in a way that does not impose a rigid definition not

intended by the language designers. SEMANOL will undouMtedly produce a single,

2"An Axiomatic Definition of the Programming Language PASCAL," C.A.R.
Hoare and N, Wirth, Acta Informatica 2, 335-355 (1973).
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unambiguous answer which would be perfectly correct for a particular compiler

but perfectly misleading for a mechanized language specification.

The argument for preventing overspecification should not be construed as a
case for loose specification. It is simply that a SEMANOL specification, like
any compiler implementation, ultimately provides some unambiguous semantic
realization for each language construct. These implementation choices must

not usurp the prerogatives of the language designers.

As stated earlier, good language design will minimize the undefined and surely
minimize the impact of the undefined on program portability, intellig oility, and
transparency. The "holes" remaining in particular language definition may give
the compiler implementers extra degrees of freedom. This is an important
factor in generating an efficient representation of the source language and it has
no adversec effect on the users of the language. It seems unwise and costly to
specify the semantic effects, for example, of optimization. Since the SEMANOL
specification is by its very nature unambiguous, its adoption as a standard that
would force each compiler to accept only the SEMANOL-defined language would

establish an impractical goal.
6.2.3 READABILITY

As a language specification standard, it must be judged that a SEMANOL descrip-
tion fails in readability. TFor the language user, it is unsuitable as a reference
document ; for the compiler implementer, it is difficult to read. To learn the
semantic cffects of a particular language construct, it is necessary to review the
extremely complex machine that describes it. This means following function
calls through deep nestings and convolutions for even the simplest effect. Com-
pared to a narrative descrivtion, it is noticeably deficient. An application pro-
grammer could not be expected to use a SEMANOL specification as a language
reference document. An English-language description of a language can achieve
the same objectives of completeness and unambiguity and result in a much more

readable document.




For the compiler implementer, much of the same objection remains. Of course,
he is more experienced in the jargon of languages, language definition, and
compiler technology. Thus, the difficulty of the specification is not impenetrable,
but a concise prose description would serve him better and at less expense.

The way the semantics are necessarily realized in SEMANOL is largely foreign
to compiler technolegy, thereby requiring a much more complex translation

from the specification to the implementation. The SEMANOL specification serves
to obscure that which the compiler writer needs to have most simply and clearly

stated.

There is no intrinsic limitation to the clarity, completeness, or unambiguousness
of an English-language description of any programming language. Furthermore,
the effort to achieve such a specification cannot be expected to be more than that
of writing a SEMANOL description (it is probably a good deal less); the result

is considerably more useful for most readers.
6.2.4 VERIFICATION

Another objective of SEMANOL is to provide a machine-verifiable language
description. However, the verification is not accomplished easily, nor are there
any features of SEMANOL that facilitate the verification. The process is to
execute test programs written in the language under measurement. Such a proc-
ess is in no way different from testing of a compiler for the same language,

except that the SEMANOL interpretation is much slower.

In particular, the degree of verification is a function of the thoroughness of the

set of tests. If the tests lack comprehensiveness, then the SEMANOL specifi-
cation is to that extent unverified. Furthermore, there is the requirement for a
previously derived standard of success; i.e., do generated results match expected
results? Again, the design of the test cases and their expected output is an
activity independent of the specification writing. Relying exclusively on the

SEMANOL description to define the results would not accommodate the pessibility
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of error in the SEMANOL specification. In this situation, the quirks of a
particular realization of a language specification - whether it is a compiler or a
SEMANOL description ~ would wrongly become a default standard. If, in such

a case, compiler results differed from SEMANOL results, which would be
accepted? The SEMANOL specification is just as prone to implementation oddities
and errors as is a compiler. Consequently, either the choice is arbitrary, or

any specification must submit to yet a higher authority - a set of exhaustive

test programs - for validation. Thus, SEMANOL does not appear to advance

the state of compiler verification.
6.2.5 MACHINE-INDEPENDENCE

A useful language specification distinguishes between machine-dependent and
machine-independent semantics. A well designed specification, furthermore,
greatly minimizes the former, leaving undefined much that is machine-dependent.
Clearly, a compiler is target-machine dependent to the extent that it generates
machine instructions for some particular machine whose effects define the

"undefined" semantics.

The concept of SEMANOL being more target-machine independent than a com-
piler is questionable; some 25 to 30 percent of the SEMANOL specification of
J73 is given over to machine-dependent semantics. This is quite comparable to
the DECSYSTEM-10 J73 compiler, for example. Does this mean that 25 to 30
percent of the language specification standard is to be rewritten for each new
target machine? It is doubtful that this would improve upon a single English-~
language description, and there would be a heavy cost burden in preparing and
verifying a SEMANOL description in addition to a compiler for each new target
The alternative of a single SEMANOL specification would incur implementation
difficulties analogous to the JOVIAL/J-3 ""signed-magnitude effect’" problem, and
wruld by its nature either invite deviations or impose excess costs on all devel-

opment efforts.
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6.2.6 MODIFYING THE SPECIFICATION

A language specification must be capable of easily accepting convenient and
cost-effective modifications to accommodate language changes. A SEMANOL
description is more difficult to modify than an English description. A somewhat
serious limitation in SEMANOL is that the semantic definitions refer to constructs
in the context-free syntax by tkeir ordinal position (e.g., #SEG,) in the production.
This can mean that even a simple change may necessitate the rewriting of each
semantic function which refers to an altered syntactic production. Perhaps some
future version of SEMANOL will lift this restriction by permitting the naming of
elements of a production; however, this will impair the readability of Part 1, the

most readable portion of the specification.
6.2.7 CURRENT STATE OF SEMANOL

Because of funding limitations, the testing of both the SEMANOL (73) program

and J73 specification are incomplete. Furthermore, at this writing, the
SEMANOL system is inoperative. The fact that twice during the development of
SEMANOL, the system was disabled by modifications to MULTICS FORTRAN,
leads to the conjecture that the implementation has relied too heavily upon
MULTICS-dependent FORTRAN peculiarities and especially that FORTRAN I/0
statements have been used too liberally throughout the program rather than con-
centrated in a single I/O module. These are, of course, implementation questions

that are subject to improvement.
6.2.8 EFFICIENCY

Because SEMANOL employs the interpretive approach to program execution,
testing is extremely slow. As a research tool, this is of relatively little con-
cern. However, neither of the SEMANOL specifications thus far written have

reached a satisfactory conclusion, and the extreme inefficiency of the system -

aggravated in part by the inefficiency of MULTICS itself - must bear at least




part of the responsibility for this. The proper verification of the J-3 description,
for example, would demand exercising at least the same set of JCVS tests used to

validate the JOCIT J-3 compiler. These tests are voluminous, and the amount of

¥
1
4

computer time required to execute them will render any testing activity quite costly,
In addition, there is the problem of limited capacity of the SEMANOL system,
which would require repackaging the JCVS tests into smaller modules, eacn with a
considerable overhead in data definitions, thereby adding further to the required

ﬁ[ testing time,

6.2.9 DEFICIENCIES IN EXISTING SPECIFICATIONS

1 Two deficiencies in the existing SEMANOL specifications for JOVIAL cannot be

" ‘ overlooked. The first is the inability to handle COMPOOL, and the second is

| the failure to support independently packaged procedures. Perhaps both of these
omissions will be corrected in future implementations, but for the present,
these shortcomings obviate certain classes of testing, thereby leaving the speci-

fications less complete than required.

6.2.10 EFFORT TO WRITE

The authors of SEMANOL have estimated that to prepare a J73 SEMANOL speci-
fication requires approximately 1.5 man-years. This in itself is not a prohibitive
cost. llowever, since the specification must be modified (25 to 30 percent) to

accommodate machine-specific semantics, this cost must be added to the effort

TR o

to prepare each retargeted compiler. A conclusion that surfaced during the study
of these costs is that this effort is not significantly less than that of writing a
compiler for the same language that generates a simple machine-independent
macro code that could be assembled and executed on the target machine. Such

j a small compiler can be chosen as a language standard to the same extent as the
SEMANOL specification. Of course, it is less readable as a language standard
than even the SEMANOL specification, but since neither is within acceptabie
limits of readability, such a comparison becomes irrelevant. The advantage of
the small compiler approach is that at least a programming tool is produced.

; While not efficient, the tool is at least not interpretive and thus considerably
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faster than the SEMANOL specification. CSC does not propose the small
compiler approach as an alternative to the SEMANOL approach; neither approach
is relevant to providing either a standard readable definition or a compiler imple-
menter's guide. Although the estimated effort to create a SEMANOL specifica-
tion is not excessive, it has not been confirmed with a completed, comprehensive
specification. Certainly more information is needed to judge the cost of the
approach. Indeed, the preceding paragraphs have presented substantive objec-

tions that question the worth of the approach irrespective of cost.
6.2.11 SEMANOL AS A TOOL FOR LANGUAGE DEFINITION

SEMANOL seems eminently well suited as a tool to assist language designers
during the developmental stage of language definition. For example, a SEMANOL
specification can be developed alongside of the prose descriptions that cvolve as
language constructs are chosen and refined. The preparation of the SEMANOL
specification undoubtedly will reveal semantic difficulties not evident in early
discussions, and this will serve as useful feedback in the design effort. Of
course, this does not imply that just because a particular semantic effect is hard
to model in SEMANOL that this argues against the construct in question, but it

is clear that simply imposing the discipline of mechanizing the abstract language
ideas will assist in eliminating ambiguities and perhaps lead to useful simplifi-
cation without diminishing language power. Furthermore, the mechanization
process should result in a more complete prose description of the semantics
which will serve both implementers and users alike. While the use of SEMANOL
in this manner is outside of the notion of providing an LCF for some existing
language, if some future LCF is undertaken for a language under concurrent

definition, SEMANOL may be a useful tool.

6.3 CONCLUSIONS

SEMANOL is an interesting and thoughtfully conceived language tool. However,

within the context of an LCF designed to support existing languages, it is
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largely peripheral to the central tool requirements. However, in the event that
some new language is designed under the auspices of the LCF, then SEMANOL

should be included as a language definition tool.

The deficiencies of existing language specifications must be corrected for the

HOL or HOLs chosen for a pilot LCF implementation in order to provide a
language reference manual and tutorial guide for applications programmers. Then,
too, if an HOL is chosen for which no standard implementation exists that satis-
fies the LCF needs, the standard reference must be enhanced to serve the com-
piler implementers as well. These specification requirements are discussed

further in Section 10.
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SECTION 7 - RECOMMENDED LCF TOOLS

The tools to be incorporated into the LCF must meet the requirements of
supporting (1) program development and (2) language and compiler development,
modification, and maintenance. To meet these goals, the following tools are

recommended f» inclusion in the LCF:

o Compiler implementation tool
® Language specification
° Statistics collection

Compiler validation

B e

i ® Program validation

® Program development and implementation tools
These tools are discussed in the following paragraphs.

7.1 COMPILER IMPLEMENTATION TOOL

An HOL control facility must include a means for developing and maintaining a
standard compiler for the language. This means that when new target or host
computers become subscribers to the facility, a low-cost method must be pro-
vided to permit the rapid development of compiling facilities for the new machines.
This requirement includes both rehosting and retargeting of the standard com-
piler. With certain modifications, the existing JOCIT system meets this require-

ment. The incorporation of JOCIT into the LCF is discussed in Section 9.

7.2 LANGUAGE SPECIFICATION

In order to support the HOL, the language must be defined in clear, complete,

and unambiguous terms. The language specification must address two distinct

readerships: (1) the application programmer, i.e., the primary user of the HOL,
and (2) the compiler implementer and maintainer who is responsible for develop-

ing, enhancing, retargeting, rehosting, and maintaining the compiler in a reliable




state of service for all subscribers to the facility. Two levels of specification
are required for the users: a tutorial manual for newcomers to the language,
and a reference manual that includes a complete semantic description of the
language for line programmers. This second text serves as a proper require-
ments specification for the compiler implementer and maintainer as well. The
development of the language specification is conceived entirely as a documenta-
tion effort; the SEMANOL system is not recommended for this purpose. The

requirements for the language specification are discussed in Section 10,

7.3 STATISTICS COLLECTION

To assist in analyzing the use of language features and to provide objective data
to help assess language deficiencies, language redundancies, and language
difficuities, it is proposed to include in the LCF a means for the automated col-
lection of both compile-time and execution-time program statistics. This pro-
posal is based on the work begun for the JLMT (JOVIAL Language Measurement
Tool) discussed in Section 3 and extended to provide functional specifications

for its realization. The statistics collection tool is described in Section 11.

7.4 COMPILER VALIDATION

A successful LCF will include a means of validating that the standard compiler
adheres properly to the language specification. To this end, Section 11 discusses
the requirements for a validation system that will be used to verify the HOL
standard compiler and also subsequent rehosted and retargeted versions of the
compiler that are developed with the compiler implementation tool. For a J-3

or J73 LCI, the existing JCVS tests may be incorporated with enhancements

aimed to correct the deficiencies observed in Section 5.

7.5 PROGRAM VALIDATION

The previous four tools are directed primarily to the goal of language and com-

piler standardization. To assist the development programmers in their tasks,
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the LCF will also include facilities for automated program validation. The
objective here is to provide a standard, machine~-independent, but HOL-oriented,
tool that assists the programmer in systematically exercising all paths of his
program and in providing him with symbolic data to display results which are a
function of asserted values. Futhermore, statistical data will be derived from
program executions which permit individual and composite performance analysis,

This tool will be used by the programmer both at the source program symbolic

level before compilation and after execution for postmortem performance measure-

ment. Section 13 discusses the incorporation of JAVS into a J-3 LCF and pro-

vides a model for similar program validation tools for other HOLs.

7.6 PROGRAM DEVELOPMENT AND INTEGRATION TOOLS

The requirements for supplementary tools to aid both the applications program-
mers and the compiler implementer and maintainer are closely related to pro-
gramming languages. Section 14 of this volume presents the requirements for
source text editing, object module linking and loading, language translation, and
debugging facilities. Traditionally, such tools have been supplied as part of the
operating system and are developed with little regard to the support of HOLs and
the kinds of tools suggested in this report. A pilot implementation of an LCTF
may go far in developing standards for these important supplementary tools and
develop design goals that identify to what degree these may be implemented in a

machine-independent manner.
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SECTION 8 - LCF OVERVIEW

8.1 INTRODUCTION

Almost any contemporary operating system for a medium-scale to large-scale
machine incorporates most of the previously described tools in some form.
However, they generally fail to provide true HOL support, or if they do, a
multiplicity of languages usually results in a compromise ihat favors support

of only one at the expense of the others. For example, most systems do a
reasonable job of supporting FORTRAN, but users of other HOLs on the system
suffer the limitations of FORTRAN. These limitations include name qualifica~
tions only at the external module level, inability to refer to packed or part-word

items, and the support for numeric statement labels only.

Furthermore, many of the tools have been built as an afterthought to certain
unyiclding aspects of the system architecture. It is not likely that any large,
well-structured program exists that does not require the services of flexible
linkage editing facilities. Yet, typical link editors are narrowly conceived,
seldom addressed to program debugging interfaces, are usually sensitive only
to a single HOL, often poorly documented (module formats, for example), and
prone to error when exercising exotic but necessary facilities (such as overlays

or common block placement).

A successful LCF will incorporate a variety of tools whose external specifica-
tions and interfaces submit to the principle of totally integrated design, Thus,
the HOL compiler should not have to build symbolic debugging tables if the link
editor cannot link them as well as the module text. Similarly, source program
debugging of J-3 programs will permit the programmer to refer symbolically
to local-scope variable names and packed items; furthermore, the displays will
be by type, including status type. Although memory dumps are seldora used in

a facility providing sophisticated interactive symbolic debugging, at least when




it is required, such a dump should display module-relative addresses so that
the programmer may easily find his program variables through reference to the
compiler-generaied environment listing, Thoughtfully integrated systems wiil
also eliminate unnecessary duplication. It is hoped, for example, that the
JAVS-generated execution summary files can be used for statistical analysis.
The recommendations in this section assume such an integrated approach to

implementing an LCF.

8.2 SELECTION OF AN LCF HOST SYSTEM

The tools studied for analysis for the LCF largely fail to meet the integrated
design objectives; they simply were not developed with this principle in mind.
Indeed, many were developed independently of the LCF concept. However, in
considering a real implementation of an LCF, because of the availability of

existing tools, a pilot implementation of a J-3 LCF appears to be very practical.

Considering the options for the system on which to build such an LCF, the low-
est cost approach points to the HIS-6000 machines with GCOS. Fortunately, two
of the tools, JOCIT and JAVS, operate on those machines. The GCOS design,
however, does have a drawback in that it does not provide sufficient flexibility
in its debugging and linkage-editing capabilities to best support the objectives of
an LCF host selection incorporating integrated program development facilities.
Section 14 of this volume describes the requirements for such services, and

shows how GCOS responds to these requirements.

A reasonable alternative to GCOS is the MULTICS system. Because the MULTICS
system operates side by side with the GCOS facility at RADC, it shares adminis-
trative and tactical advantages of an LCF based at Griffiss AFB. MULTICS offers
the significant advantages of a totally integrated program development concept
from the basic services of text editing (the weakest link) through file management
services, link-editing, and debuggzing. The obvious drawback is that neither

JAVS nor JOCIT are hosted in this environment and the cost of this rehosting
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must be measured against the cost of enhancing the GCOS services to bring them

up to the requirements for the LCF.

Another disadvantage of MULTICS is its limited capacity (40 or fewer simultane-
ous users) and its slowness under even modest load (say, 20 users). Other prob-
lems exist in considering MULTICS, such as the MULTICS requirement that all
software be written in PL/I. Inasmuch as JOCIT, for example, is written in
SYMPL, rehosting is greatly complicated and the costs are significantly increased
for rewriting JOCIT in PL/I. Furthermore, this conflicts with JOCIT rehosting
design goals: it cannot be assumed that other hosts will support PL/I. However,
the attractiveness of MULTICS is still manifest. Users of the system are
exposed to - as is the case with few other systems - the hest of integrated design
concepts and a multitude of user-oriented services that support the diverse
requirements of an LCF even beyond the concept of tool support; and MULTICS
is, of course, widely available through the agency of the ARPA network.

8.3 FUNCTION OF TOOLS WITHIN THE LCF COMMUNITY

The interactions among the LCF community and the tools that support it are
shown in Figure 8-1. The basis of any LCF is the language specification for the
HOL being supported (or multiple specifications in the case of multiple HOLs).
This specification is used by both the user community and the compiler devel-
opers, although as it has been suggested, it will exist in different forms for
different levels of readership. Newcomers to the HOL will have access to a
tutorial description, while production programmers will rely cn the specifica-
tion as a standard reference document for creating programs constructed with
the HOL. Finally, the construction of the compiler implementation tool - JOCIT

in Figure 8-1 - also is based on the same standard specification.

Of all the tools supported by the LCF, the compiler implementation tool is the
most important. The success of the LCF is measured in terms of both the quality

of the production compilers and the relative ease with which they may be l
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constructed with the tool to meet new hosting and targeting requirements within

the LCF community. Once the JOCIT component is completed, a standard HOL
compiler is distributed. It may exist at a single site or at multiple sites; it
may be hosted on a single machine type or on many different machines; and each
copy of the standard compiler may generate code for any number of different

target machines.
8.3.1 ERROR CHECKING

The correctness of the standard HOL compiler is verified using the compiler
validation tool - JCVS in Figure 8-1 - and corrections to JOCIT, and thus to the
standard HOL compiler, to complete a feedback cycle originating with failures
detected with JCVS. This cycle terminates at a successful completion of the

JCVS activity.

At any given site, then, the user programmers develop production software
using the standard compiler. The major feedback within the LCF "system'
originates at this point. Error reports are the most obvious form of feedback
and may trigger the JOCIT/JCVS cycle once again until the errors are corrected.
In a manual LCF, such feedback takes the form of written SPRs (software prob-
lem reports), which are routed from the source of complaint through the admin-

istrative center to the compiler maintenance team.

In an automated or partially automated LCF, such reporting may be greatly
expedited by use of a central LCF timesharing facility (with or without the serv-
ices of a network which only affects distribution; since this is a many-to-one
transmission, the distribution function is not required). Reports may be displayed
at prescheduled intervals at the LCF administrative center and routed almost

immediately to the responsible maintenance agency.

The maintenance team need not be located at the LCF central site. They may
employ periodic scanning of a '"New SPR" file (e.g., on-line disk at the LCF)

as a trigger for undertaking debugging. One aspect of this reperting-correcting




cycle that requires the most thoughtful design is the access to data that caused

the error in the first place. Failures in production programs are not easily
reproduced at the maintenance site. Clearly, a network-connected LCF provides
a necessary link between the source of the error and the activity that has been

undertaken to correct it (or to determine that it is not an error in the software).

Other considerations appear then: How is access provided to the original files ?
Does the maintenance team require sanctioned accounts at each subscriber site ?
What happens when failure occurs in secure installations? These questions are
not readily answerable in the absiract. It is most likely the case that procedures
unique to each subscriber site will be required to solve this problem, and the
solution may depart from the goal of full automation (e.g., tapes may have to be
shipped from subscriber sites to the central LCF in order to permit the mainte-
nance team to analyze the failure). Other solutions present themselves, but the
generality of any of these maintenance interface specifications is limited. The

full range of possible operating system architectures simply is not known.

One approach is to assign the maintenance team a highly sanctioned account at
each subscriber site which gives them privileged access to user's files to recon-
struct the reported failure. Read-only access may be sufficient for this purpose
so that the files may be copied to the team's own account and thus preclude inter-
ference with production programmers. The advantage of such a scheme is that
it relieves the users of further bother beyond that of reporting the error and
ensuring that their files are not altered before the maintenance team can copy

them.

Such an approach may not be applicable to subscriber installations requiring high
security. It may not be possible to have access to the system at all, as is the
case with certain military installations. It is beyond the scope of this study to
deal with the complexities of security requirements of potential subscribers to

the LCF, but swift response to user error reports is a clear objective of the
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facility. Perhaps secure installations could at least be provided with low-
security access facilities. Then, disk packs or tapes may be carried from
the secure area to a nearby companion low-security system connected to the

LCF where the maintenance team could have dial-in access.
8.3.2 STATISTICS GATHERING

As is shown in Figure 8-1, the production facilities have direct access to two

of the LCF tools: JLMT and JAVS. JLMT is the statistics-collection tool that
operates both at user request and at administrative request. From the LCF
point of view, the administrative function is the more important one. The HOL
managers have the most vested interest in determining the effectiveness of the
HOL and its compilers, and the raw data for determining this effectiveness is
primarily the product of the JLMT. To this end, the gathering of language usage
data must be controllable from the administrative organization of the LCF. The
gathering of a meaningful sample of statistical data simply cannot be left to the
chance invocation of the statistics-gathering tool by .ne users. Administrators
need to be able to specify certain parameters of this activity, such as sampling
frequency, programmer- or account-selection, data reduction cycle, and iden-
tification of the raw data repository. Ideally, a facility can be conceived in
which the LCF administrator dials into a special account and sets these param-
eters on line or calls up certain report generators. This same administrator
will have access to all subscriber sites for this purpose, and at some future
stage of LCF implementation, the network connecting the subscribers will ideally
permit electronic transferral of statistical data files from user sites to the LCF

site for composite analysis.

Somewhere between user-selection of statistics gathering and automatic network
inter-site data transfer lies a realistic goal for an immediately implementable
LCF. However, even such a middle-level objective requires modification to the
operating system discipline, and this may not be achievable at low cost. Further-

more, this exceeds the immediate capacities of agencies (such as RADC) to effect;
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they simply cannot dictate changes to the operating systems to achieve the level
of automated statistical collection believed to be the ideal requirement. Hardware
manufacturers are rightfully protective of their operating systems, and they are

not likely to make swift field changes to support the suggestions in this report.

The lowest level of statistics collection that excludes the willing participation of
the user will be built into the standard HOL compiler. This method will append
statistics to a system file to be consolidated periodically - asynchronously and
selectively - and copied to secure storage. This scheme is fairly simple to
implement and requires no tampering with the operating system in most cases.
However, it is easily defeated by the user who has the access to the same sys-
tem files as does the compiler. The user can corrupt the files any time, either
knowingly or unwittingly. These alternatives are discussed further in terms of

implementation design specifications in Section 11 of this volume.

The administrative function of the LCF will collect statistical data at periodic
sampling intervals (a tunable parameter) and will create summary reports as
described in Section 11. From these data, it may be determined what features
of the HOL are underused, troublesome, misapplied, etc. Picking the right
data to collect is the key to the entire collection issue. Administrators may
present the data to the language change control committee who will have a fac-
tual basis for making certain language changes. It would be interesting, for
example, to discover to what degree parallel FOR statements are actually
employed in real JOVIAL/J-3 programs. They are not easy to implement,

potentially troublesome, and largely redundant.

The proper application of statistical analysis will be most effective if tightly con-
trolled at two levels of the LCF: the administrative level, and the language con-
trol level. The LCF administrators will control the raw data collection,
subsequent data reduction, final report generation, frequency of report distri-

bution, and report form and content. The language change control committee
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will meet periodically, perhaps in response to some pressing need identified by
the LCF administrators from their study of the statistical reports (as well as
from hearing complaints of users). The change control process will, as a result
of LCF implementation, use the usage data collected from subscriber organiza-
tions within the LCF community to temper natural biases and the inclination to
accept a loudly advocated change. There is no better way, for example, to
stifle an objection to the deletion of type ""dual' from the J-3 language than to
present a year's statistical data showing that it was used, for example, in less

than . 0001 percent of all compiled lines.

Statistical data also will be used in assessing compiler performance. Execution
statistics can greatly influence the choice of areas in which to concentrate opti-
mization, the selection of table-packing algorithms, the degree to which static
storage sharing is attempted, or the choice of fixed or stack allocation for local-
scope non-OWN variables. Statistics from different user environments may show
that some of the above choices should be incorporated as user-selectable alter-
natives in the standard HOL compiler. Some future version of the LCF may
provide for direct feedback of certain execution statistics to the optimizing phase
of the compiler so that the application of optimizing algorithms may be auto-

matically and instantaneously responsive to changes in the user program profile.

Because HOLs are procedure-oriented, a typical, well structured programming
system employing the HOL will actually describe yet a higher-order language in
which higher functions and operations are described as user-written procedures.
The higher-level function of such procedures is not directly inferrable from an
automated examination of the code (consider, for example, list-processing sub-
routines in JOVIAL). Therefore, statistics collection based on language forms
must be supplemented by additional information in order for the data to show the
ways in which the HOL (or HOLs) should grow to meet real processing needs.
For example, should variable-length strings, or list-processing operations be

incorporated as language primitives ?
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8.3.3 TESTING

JAVS is a companion tool to the statistics collector. The principal difference is
that JAVS is invoked exclusively by the user to aid him in validating his program-
ming system. The implementation of JAVS is largely exterior to the operating
system and thus gives the LCF developer greater freedom than does the statistics
collector. JAVS works almost exclusively with user files, operates at the user's
request, and creates output for the user's consumption and analysis. Since JAVS
aids the user in verifying the program against its design specifications, it is a

primary aid to LCF administration in assessing the performance of the HOL.

Whereas error statistics can reveal troublesome HOL features, total program
development difficulties typically result from several factors - poor programming
techniques, incomplete and incorrect design specifications, shortage of neces-
sary programming skills, and inapplicability of the HOL to the programming

task. However, the importance of JAVS to the user is significant in an orderly
development of a complex system. It points the way to a lcgzical and compre-
hensive testing strategy that aims to test all paths of the system in a systematic,

measured way.

There is one aspect of JAVS implementation that dovetails usefully with the
statistics-collection function: the recording of run-time data. The same JAVS-
generated data base may be used by the statistics collector to determine run pro-
files, which may be displayed against source listings to determine heavily used
program constructs, to provide correlation between program features and execu-
tion failures (program aborts) or errors (failures of the program to produce
expected results). Ultimately, program managers may infer from their develop-
ment experience just what aspects of the HOL merit enhancement, clarification,
correction, or optimization. Thus, a JAVS-like tool assists indirectly in the

LCF function of maintaining a serviceable and up-to-date HOL that addresses the

real needs of the community.




8.3.4 OTHER SUPPORT FUNCTIONS

The final set of support tools are so classitied because they are necessary
adjuncts to the LCF mainstay tools, but do not directly serve the principal LCF
requirements. They are proposed as integrated members of the LCF to
strengthen the principal tools: the compiler building tool, the compiler itself,
the statistics collector, and the program validator. They provide no direct feed-
back to the language specification function nor do they influence the growth and
development of the HOL., However, because of the integrated approach, they
may dictate certain functional amendments to the basic tools (e.g., additional

compiler output for debugging).

While most of the proposed support tools are standard and rather obvious, the
inclusion of the language translator tool is not. A single HOL LCF has its great-
est appeal to potential subscribers whose programming task is planned in that
HOL. For those installations who intend to program in a different HOL, the
LCF may be irrelevant. However, there is yet a third class of potential sub-
scriber who operates a well-developed program complex and is at the stage of

transition into a major 'next generation.' He has a large investment in programs

that he cannot afford to simply discard, but he sees the advantages for his pro-
gram in the use of the HOL. How does he justify a language switch? The LCF
can service his needs by providing a number of language translators. Thus, for

example, if an installation is considering discarding JOVIAL/J-3 in favor of

J73/1, his decision is made a good deal easier if the LCI offers a source lan-

guage translator from J-3 to J73/1.

HOL translation is clearly not an easy task, but its difficulty should not neces-
sarily defeat attempts to provide them. Some languages are relatively straight-

forward in their translatability to other languages (e.g., SYMPL/J73, J-3/J73),

and even the difficult ones can be done with perhaps only a small sacrifice in effi-

ciency., COBOL, for example, does not readily translate to J73 on a one-to-one
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basis, but thinking of the 1/C statements as procedure calls opens the possibility

of successful translation.

Other features, such as decimal-type variables, offer significant efficiency
problems in translating from PL/I or COBOL to, say, FORTRAN or JOVIAL.
The problem there is really not one of translation - decimal values may also be
manipulated by subroutine, which they probably are by the PL/I or COBOL com-
pilers anyway - but rather one of applicability of the LCF's HOL to the potential
subscriber's programming problem. If his programs really require extensive
use of decimal arithmetic, then perhaps J73, for example, is simply not a cost-
effective choice in the first place. Nonetheless, machine translation has been

effective in a variety of special situations.

The highest probability of success occurs in translation between two languages
on the same machine. A major pitfail in translation is the accommodation of
hidden machine-dependencies coded in the HOL, and these are almost impossible
to recognize and handle effectively at the translation level. A reasonable goal of
language translation is to achieve something less than 100 percent automatic
translation. An LCF will be the more inviting to potential subscribers if trans-
lators exist and their effectiveness can be demonstrated in the form of

benchmarks.
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SECTION 9 - COMPILER IMPLEMENTATION TOOL

JOCIT provides a basis for a generalized compiler implementation tool. To
realize JOCIT's maximum potential within the LCF, certain enhancements are
proposed to facilitate the principal functions of convenient rehosting, retargeting,
and meeting the interface requirements of the support tools. The following sub-

sections discuss these proposed enhancements.

The presentation assumes modifications to the existing JOCIT to support a
JOVIAL/J-3 LCYF. The majority of the recommended changes are, however,
entirely compatible with any other HOL chosen for the LCF; indeed, GENESIS
was chosen for front-end development to support both convenient rehosting and
multiple languages. The retargeting, rehecsting, support tool interfaces, and
improved optimization discussions are, with one exception, entirely independent
of the choice of HOL., The one exception relates to the use of SYMPL as the

compiler implementation language.

SYMPIL. was chosen as the implementation language to facilitate rehosting. A
compact, reliable compiler existed which enabled quick bootstrapping, and the
Lunguage itscelf is far superior for compiler writing than JOVIAL/J-3. However,
in considering the possibility of a J73 LCF - the pressure for J73 standardiza-
tion is clearly mounting - experience in developing the DECSYSTEM-10 J73/1
compiler has proved that this language is at least as well suited to compiler
implementation as is SYMPL. Thus, a J73 compiler is more usefully imple-
mented in its own language, and the principal effect is to simplify the develop-
ment logistics considerably. Thus, the two subsections entitled ""Retargeting
SYMPL" and "Optimizing SYMPL" (subsections 9.2.2 and 9.6, respectively)
are relevant only to the implementation of a J-3 (or any other language not suita-

ble for JOCIT implementation) LCF.

Subsection 9.5, Automated Code Generation, has been included in the tool con-
cept. However, the technology proposed is considerably more speculative than

that relating to the other enhancements, and should, if adopted, be undertaken
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as a parallel R&D effort. There is much to be gained in exploring this largely
new topic. However, even a partially successful venture would pay significant
dividends in meeting the main objectives of the LCF and particularly in support-

ing the real needs of the user community.

Integrating Requirements For Gene ralized HOL support (subsection 9.7), addres-
ses the required enhancements to support languages other than JOVIAL/J-3.
While the choice of a J-3 LCF reduces implementation costs by adopting the
existing tools (JOCIT, JAVS), the choice of J73 or some other HOL requires

new development effort. The goal of integrated tool development, then, is best
supported by incorporating many of the separate functions identified for the
statistics collection and program validation tool into the framework of the com~-
piler implementation tool. This integration is discussed, and the principal new

components are identified for integration into the JOCIT program.

9.1 ENHANCEMENTS FOR RETARGETING

To make the LCF more inviting for a potential subscriber whose machine is not
supported by the HOL compiler, a means must be provided for quick retargeting
of the compiler. Using an HOL often has been rejected because no compiler was
available for the HOL. Quick retargeting effectively eliminates this objection
and can even give the potential subscriber the facility to run benchmarks to aid
decision-making. The objective of quick retargeting is not consonant with
generating efficient code, and the retargeting enhancements are suggested with
this limitation in mind. However, CSC's proposed approach rejects such
schemes as interpreted object code whose performance is so deficient as to
neutralize the attractiveness which the quick retargeting facility presents. The
objective of retargeting is to make available quickly a compiling capability for
any new target machine for which an assembler and loader are available. While
the JOCIT compiler is basically well suited to meet these retargeting goals,

certain enhancements are proposed to render retargeting less coustly than at
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present and to reduce the required schedule as well. Applying the following
modiiications to JOCIT should yield a retargeting effort within the range of

three to six man-months.
9.1.1 TARGET MACHINE PARAMETERIZATION

Several JOCIT modules make implicit assumptions about characteristics of the
target machine architecture. These must be identified and replaced by refer-
ences to standard compiler-wide target machine parameters. Typical of the

necessary parameters are:

@ Word size

L] Byte size

L] Bytes per word

° Medium-packing access field descriptions
® Addressing units per word

] Standard alphanumeric collating sequence

9.1.2 QUICK CODE GEXKERATOR

The present JOCIT code generator and editor phases must be supplemented by
new quick code generator (QCG) phases. As conceived, there is a COMPOOL-
like file that incorporates the description of each supported target machine. The
QCG embodies both code generation and editing functions. The QCG may treat IL
sequences generated by the front end as macros and generate ''canned’’ code
sequences for them. The editing function is somewhat simplified in that source
code output, rather than relocatable binary, is generated. Such a QCG scheme,
while not exactly automatic, is of low effort once familiarity with the rather rich
JOCIT IL is achieved. To minimize the effort for each QCG, it is suggested that
the quick-compiling mode of the JOCIT compiler imply no optimization; i.e., the
optimizer phases are not invoked in quick-compile mode. This eliminates the

complex VALD/VALU/SPOIL interface and the attendant requirements for regis-

ter memory maintenance.




9.1.3 EXECUTIVE MODIFICATIONS

Required executive modifications include the rezognition of the ""quick compiler"
option, selection of QCG instead of COGEN and EDITOR, and provision to gener-

ate the assembly source output of the QCG phase.
9.1.4 JOVIAL LIBRARY

To avoid rewriting the J-3 library for each new retargeting, a J-3 L.CF should
contain a version (perhaps the only version) of the library that is itself coded in
J-3. It is impossible, of course, to write the library entirely in JOVIAL, but
as much as possible should be so written. Thus, the library may be compiled
in the quick-compile mode of JOCIT, which will make the library available at
low cost. There will be some loss of efficiency by taking this approach, but
that is consistent with the quick retargeting goals. Ultimately, the library can

be rewritten in target-machine assembly language to achieve maximum efficiency.
9.1.5 DIRECT CODE

The direct code processor subphase of the analysis phase must be replaced by a
direct code processor that accepts target machine assembler source. This can
be achieved by a new processor for each such target or by placing certain con-
straints on the reference to JOVIAL variables within direct code and providing
a canonical direct code processor. The latter approach is more costly to
develop but reduces subsequent retargeting costs somewhat. The present inter-
mediate file direct code interface is sufficiently general to support either

approach,
9.1.6 TESTING

Testing of any new retargeted compiler should consist of exercising the JCVS
(or its equivalent) series on the new target machine. These standard tests are
parameterized for target machine data characteristics and, as such, are readily

portable to the new environment.
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9.2 ENHANCEMENTS FOR REHOSTING

The principal requirement for the compiler building tool with'» the LCF com-
munity is its own rehostability, a much more complex task than retargeting.
The compiler itself, consisting of over 50, 000 lines of source HOL must be
compiled, moved, integrated, and tested. The main element of rehostability

is that the compiler is itself written in an HOL (SYMPL). To a lesser extent,
host machine independence is achieved through minimum assumptions within the
compiler on host machine characteristics. These assumptions must be con-
sidered in order to give the tool maximum rehosting potential. An irreducible

number of steps are required to rehost a JOCIT compiler:

® The JOCIT executive must be installed on the new host
® The SYMPL compiler component of JOCIT must be retargeted to the
new host

° GENESIS must be modified, as required, to produce tables consis-

tent with the host machine data formats

° All JOCIT components must be compiled with the retargeted SYMPL

compiler

° The compiled components must be integrated on the new host with

the new executive

L The compiler must be validated, which may involve recycling of
some of the above steps (e.g., serious errors in the SYMPL compiler

output may require recompilation of the entire JOCIT system)

To meet the objectives of this minimum set of steps, the enhancements to

JOCIT described in the following paragraphs are required,
9.2.1 JOCIT EXECUTIVE

The executive is written almost entirely in assembly language for compiler effi~

ciency. This requires rewriting for each new host, traditionally an effort of
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at least six man-months. This effort may be reduced by rewriting some execu-
tive components in an HOL, either JOVIAL or SYMPL. For maximum HQL-
independence, it is suggested that SYMPL be used, since retargeting SYMPL is
required in any case, while retargeting JOVIAL is not necessarily implied by
rehosting JOCIT. (However, most rehosting efforts will probably include retar-

geting of JOVIAL for the new host as well.)
9.2.2 RETARGETING SYMPL

The SYMPL compiler component of the JOCIT system is divided into two phases:
the syntax analyzer and the code generator. Retargeting requires replacing the
code generator (and its included editor). It is proposed that such a code gener-
ator be built along the same architectural lines as the present generator. This
includes some moderately complex local optimization that extends the retarget-
ing effort, but the payoff is improved JOCIT compiler performance. Where
compiler performance is less important than the need for low-cost rehosting,

a generator for SYMPL that follows the design goals identified above for the

JOVIAL QCG will suffice.

Rehosting the SYMPL compiler is not necessarily required for retargeting it.
However, where the old SYMPL host is significantly removed from the new or
where the mechanices of trw.smitting the output of the SYMPL compiler to the
new target are sufficiently tedious, rehosting SYMPL may be more expeditious.
Since the SYMPL compiler is itself written in SYMPL, it furthermore provides
an excellent method of validating the retargeting. Additional effort may be
required to effect full rehosting, such as data base adaptation, for example.
Typically, rchosting JOCIT will be greatly facilitated by rehosting SYMPL, and

the additional effort is relatively low.
9.2.3 ADAPTING THE JOCIT DATA BASE

Adapting the JOCIT data base to a new host whose word size differs from that of
any other JOCIT host (there is only one at present although JOCIT is only a single
generation evolution from compilers which run on three other hosts) requires

manually adjusting many of the structure declarations to use space efficiently.
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Subsequent rehosting could be simplified by including in SYMPL a provision for
SYM PL compiler-optimized data allocation. This would entail a change to the
present SYM PI. language in which the programmer would identify logical struc-
tures and the individual items to be shared with other logical structures. The
SYM PL compiler would then proceed to produce an optimum packing for the spec-~
ification. Such a procedure is extremely complex if a straightforward combi-

natorial approach 1s to be avoided. (For a structure such as the JOCIT symbol

table with more than 100 items and 30 logical substructures, the computation
time exceeds manageable limits.) Such a structural optimization scheme is not
4 seen in contemporary HOLs, but it is relevant to the portability question. CSC

recommends its inclusion in the SYMPL language.
% ] 9.2.1 GENESIS MODIFICATIONS

The output of GENESIS is in the form of SYMPL source language array, item,
status list, and switeh declarations. Only the first of these is affected by
rchosting. The sensitivity in GENESIS to the host machine is limited to word

size. GENESIS currently includes the provision for several common word sizes,

but for some new host not accommodated by this set, modifications will have to
be made to support it.  This is a somewhat larger task than simple parameter
adjustment, for GENESIS goes to great length to pack the coded syntax tables

optimally.
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9.2.5 HOST MACIHINE CONSTANT FORMATS

A few components of the JOCIT compiler are sensitive to the host machine word
% and arithmetic architecture. This choice is made to favor compiler efficiency
” over portability. For example, the optimizer performs constant arithmetic and
e
4 other similar optimizations using host machine constant formats and host
i machine arithmetic directlv. TFor improved portability, another scheme employ-

ing canonical form constants (including character constants) is required. Such
a scheme was emploved in the first-generation GENESIS-based ALGOL com-

pilers which compiled on three hosts for six different targets. The resultant




increase in portability will, however, be achieved with some slightly reduced

v P e W ey

performance in the front-end and optimizer phases of the compiler.

9.3 SUPPORT TOOLS INTERFACE

If the proposed support debugging tool is implemented for the LCF, the JOCIT
compiler will be required to generate a composite debugging dictionary (CDD).
The form of the CDD depends upon the system chosen for LCIF implementation.
For a MULTICS LC¥F, the MULTICS debugging interface would be used. If GCOS

is chosen, the shortcomings of the GCOS debugger are best overcome by devel-

opment of the debugging tool suggested in Section 14, and the CDD will conform

to the detailed specifications developed for that debugging tool.

The required changes to the JOCIT compiler to generate the CDD are almost
entirely embodied in the EDITOR phase. (Note that the CDD would not be gener-
ated in quick-compile mode if assembly language output is generated.) IFor known
debugging systems (e.g., DECSYSTEM-10/DDT, INFONET-CSTS/PCI;, the CDD
is largely a reformatting of the compiler internal symbol table which can be
performed by the EDITOR phase as a postprocessing function. The staten.=nt
descriptor table can also be generated by the EDITOR as it reads the code file.
The MULTICS debugging interface presents some unique requirements that will
involve the cooperation of earlier phases of the compiler: namely, the facility

to reproduce the source statement during interactive debugging will require the
front end to pass to the EDITOR a file of source code indexed by statement

number.

Source text editing may require some additional changes to the compiler for
most convenient user interface. The ability to deal with source file keys (the

compiler should ignore them but retain them for the listing) is one such change,

and it might be useful to consider reconstructing the set-used listing to refer to

such keys rather than to compiler-generated line or statement numbers.
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9.4 IMPROVED OPTIMIZATION

Since the JOCIT design incorporates a machine-independent optimizer phase,
enhancements to it do not interfere with the retargeting and rehosting goals.

Once implemented, machine-independent optimizations are automatically avail-
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5 able for the full range of supported hosts and targets (except in quick-compile
; mode discussed in Section 9). The following optimization enhancements are
g discussed in detail in Appendix B:
i
3 L Code straightening
; ° Dcad variable analysis
-' ® Extend loop optimizations
® Parallel path optimizations
° Usce of COMPOOL by the optimizer
L] Miscellaneous optimization enhancements

9.5 AUTOMATED CODE GENERATION

The present JOCIT compiler employs a code generation scheme that is totally

modular (i.c., it can be readily replaced by a code generator for a new target

machine) but it is tailored almost exclusively to the particular target machine
: in order to permit maximum special-case optimization. Some components of
the code generator are, in effect, target-machine independent (triad table build~

ing, VALU usage/register memory management, for example).

While the quick code generation scheme permits rapid retargeting, it does not

include any provision for cither global or local optimization. For production
use of the retargeted compiler, the resulting code efficiency may be insufficient

to meect the target system requirements for either program size or execution

speed. This deficieney is addressed by constructing a tailored, optimizing !
generator for the new target (one that responds to the global optimization IL

transformations and also includes local, machine~specific optimizations). This

b
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effort may be substantially reduced by employing an automated code generator.

This may be achieved through the following:
L Isolating machine-independent code generator functions

L] Parameterizing certain machine-dependent code generator functions

(such as register selection)

L] Describing code file output formats in a stylized way to be processed

by GENESIS

o Describing certain standard code generation functions (such as sub-

routine linkage conventions) as IL macros

L Describing the target machine as a set of state transition equaticns

in terms of JOCIT IL operations

The last-mentioned target-machine description represents the heart of the auto-
mated code generation scheme. The equations will be used by a totally general-
ized code generator driver to derive the optimum sequence for computer expres-
sion (formula) code. The description is entirely straightforward and easily
written from the hardware operations manual for the target machine. It will be
processed by the GENESIS system, which will generate a set of tree-structured

tables.

The code generator driver - the analogue of the front-end ANZR program - is
written once for all target machines. The IL, as output by the front-end and
transformed optionally by the optimizer, is input to the driver which operates
on the IL string and the tabular description of the target machine to produce the
code file output. Certain IL sequences will provoke somewhat straightforward
IL macro expansion; the macros are also written for GENESIS processing, and
the resultant tabular output will be available to the driver program. The driver
will process the IL string much as the ANZR program processes the construct

string. Certain recognitions will be made which will result in unconditional

replacements and code file output until the IL string is exhausted.
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A companion to this scheme will be the tabular description of the assembly
language listing to be generated by the editor phase (much as was done in the
eriginal GENESIS ALGOL compilers). The interface between the automatic
code generator and the editor - the Code File (CF) - will also be constructed by
GENESIS:; i.e., the CF array description, and the principal status lists to define
the operations codes will be output as SYMPL source language. It will also be
useful to investigate methods for describing relocatable object file formats in a
form processabie by GENESIS. However, it should be noted that in the past
similar investigations have determined that manual coding of the object file
generator is generally easier and much more efficient than describing the

interface.

The implementation of the proposed automatic code generation scheme repre-
sents a significant advance in the state of the code generation art. For those
installations considering the LCF to support their system development require-
ments, the combination of quick retargeting and automatic code generation for
efficient production compilation is extremely attractive. The automatic code
generation approach is proposed to reduce significantly the cost of subsequent
generator development, but it cannot be expected to reduce it to the level of the
quick code generator. There is also the development cost of the process, which

must be amortized over the expected range of applicability.

9.6 OPTIMIZING SYMPL

The choice of the straightforward architecture of the SYMPL compiler compo-
nent of JOCIT was made to facilitate rehosting. The SYMPL compiler attempts
only a modest sct of local optimizations in order to permit the fastest possible
bootstrapping. For example, full bootstrapping of the J 73/S compiler from the
1108 to the DECSYSTEM-10 was achieved in approximately 3.5 man-months. The
bootstrapping was demonstrated by successful self-compilation of the compiler.
Success was measured in terms of a bit-for-bit comparison of the object code of

the entire compiler in both the nth and (n+1)th versions - a single bit difference
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was treated as a failure. The cost of this approach is somewhat impaired com-
piler efficiency. Both the size of the JOCIT compiler and resulting speed of
execution of the compiler are subject to improvement. CSC therefore recom-
mends that the SYMPL compiler be modified to permit the output of the SYMPL
front end to be processed by the optimizer and code generator phases of the
JOVIAL compiler. The recommendation includes the constraint that the quick-

compiling facility not be impaired. The modifications to SYMPL would include:

® Adding a translator interphase to transform the SYMPL compiler IL
to JOCIT IL and to build a JOCIT symbol table from the SYMPL
symbol table

® Enhancing the JOCIT symbol table and IL where necessa'y to accom-
modate SYMPL language forms that do not exist in JOVIAL (e.g.,
based variables, scalar name parameters, pointer formulas, COM-

MON blocks, procedure parameters)

By way of comparison, the DECSYSTEM-10 J73/1 compiler was increased in
speed and reduced in size by approximately 20 percent when self-compiled with
the optimizing DECSYSTEM-10 compiler versus the J73/S bootstrap compiler.
This appears to be a significant enough improvement to merit serious considera-
tion. Furthermore, the capabilities of the JOCIT global optimizer - especially
when including the proposed enhancements - are considerably greater than those
of the DECSYSTEM-10 regional optimizer. On the other hand, the current JOCIT
SYMPL compiler - the parent architecture for the J73/S compiler - employs
considerably more local optimization, so that perhaps less than a 20 percent

improvement is realizable.

This section does rot recommend elimination of the present SYMPL compiler,
but instead, recommends supplementing it to provide the choice of the current

level of generated code or a more optimized level.
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E 9.7 INTEGRATING REQUIREMENTS FOR GENERALIZED HOL SUPPORT

The preceding sections have dealt with incorporating JOCIT into an LCF that is
assumed to support the JOVIAL/J-3 language. While the majority of the JOCIT
program is designed with language independence in mind, still there is a J-3
bias. Certain aspects of the symbol table structure and IL design and the choice

of SYMPL as the implementation language reflect this bias. Furthermore,

many of the functions defined for the statistics gathering tool and the program

validation tool may be more profitably integrated into the HOL compiler. These

considerations are addressed in the following paragraphs.

AP T A R

9.7.1 ACCOMMODATING MULTIPLE HOLS IN THE JOCIT DESIGN

Much of the JOCIT model as presently implemented is language independent.

The optimizer, code generator, and editor phases are essentially free of lan-

guage dependencies. Even the syntax analysis phases, while clearly JOVIAL-
oriented, are nonetheless constructed using the GENESIS approach which is

formally language independent. Of course, if a new language is to be supported,

new syntax tables (GENESIS-constructed) must be created and new pragmatic
functions must be written to support them, but the analysis program itself
(ANZR) and all supporting /O and symbol table services are entirely independent
of the compiled language. In fact, the JOCIT design meets multiple HOL require-
ments to a significant degree, and the same compiler model could be used to
compile any number of different languages. The compiler executive would select
the appropriate syntax tables and pragmatic functions according to an HOL selec-

tion option on the compiler command line.

Certain aspects of the symbol table design reflect J-3 orientation. Mostly, this
orientation is expressed in terms of special classes of symbol table entries that
express unique J~3 forms (such as arrays, for example). Similarly, the IL

includes operations (such as switch call) which are derived from J-3 require-

ments. These JOVIAL-specific features are largely superfluous, however, and




could be expressed by more general forms than already exist, or they could be

added as required to support other HOLs.

Many of these language-specific features were included to permit tailored opti-
mization of JOVIAL, but the proposed optimizer enhancements render such
language-specific forms (such as FOR-loop-specific [L) redundant. The gener-
alized forms will be processed and optimized thus simplifying the front-end and
all the interfaces. However, the accommodation of languages that differ
markedly from JOVIAL will doubtless require enhancements to the symbol table
and IL design, the requirements for which are not identifiable in the abstract.,
Of the known features of richer languages, such as PL/I, enhancements would
be required to support recursion, name qualification, and dynamic storage

allocation.

The use of SYMPL as the implementation language for JOCIT was chosen because
of its clear superiority over J-3 as a compiler writing tool. However, for other
HOLs such as PL/I or J73, this superiority is no longer evident. The complex-

ity of requiring the support of two languages within the compiler implementation

tool is no longer paid for when the principal HOL - or any one of, say, a family
of HOLs supported by the same tool - is suitable for compiler writing. CSC
recommends that a J73 (or similar HOL) LCF require that the implementation
tool be written in its own language. Aside from the simpler logistics, the use i
of a single language implies self-compilation which, as pointed out earlier, com-
prises a thorough test of the compiler even before submitting the compiler for 1
validation. However, a multiple-HOL LCI might choose to support all HOL soft-

ware using a single HOL.

The choice of a single-language compiler implementation tool does not exclude,
however, the employment of a bootstrap compiler for initial implementation.
On the conirary, CSC recommends the use of the SYMPI. compiler architecture
as a base for a bootstrapping tool for initial development. If J73 is chosen as
the LCF HOL, such a compiler already exists (the J73/S compiler operating on

and generating relocatable object modules for both the 1108/CSTS and the
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DECSYSTEM-10/timesharing systems). Since this architecture has been used
sucecessfully for production use of J-3 (subset), SYMPL, and J73 (level I subset),
its flexibility has been demonstrated to the degree that these ihree languages
differ. Its adaptability to subset PL/I for example (eliminating ON conditions,
1/0, decimal arithmetic, and automatic allocation) is expected to be high because
the resulting subset becomes more congruent with the predecessor languages

(and the deleted features in no way compromise its suitability for compiler imple-

mentation, especially at the bootstrapping level).
9.7.2 STATISTICS COLLECTION

The static statistics collection function (addressed in Section 11) is most suitably
implemented within the compiler framework. Static statistics may be collected
by the analysis phase for language data and by the optimizer, code generator,
and editor ‘or object program data. The results may be optionally displayed at
compilation end and/or collected for insertion as part of the compiler output,
cither in the object file, CDD, or special statistics data file, depending upon

the choice of operating system, language, and implementation method.

For dynamic statistics collection and performance measurement (for program
validation), the demands upon the compiler will depend upon the measurement
scheme employed. Of the two approaches discussed in Section 11, the first
requires that the code generator compute statement execution timing and insert
the results into the CDD from which it may be extracted later for postmortem
program profile analysis. If this approach is chosen, there will be some change

to the code generator/editor interface to accommeodate the timing information.
9.7.3 REFORMATTED SOURCE TEXT

The JAVS program presently provides source language reformatting for the J-3
language. The JOCIT compiler does not provide this service. For a non-

JOVIAL/J-3 LCY, it is more economical to combine the source reformatting

facility with the compiler syntax analysis phases. In order to integrate this




facility with other tool requirements discussed in Section 14, the compiler will

also include the facility to generate a reformatted source language file which is
indexable by statement number. This file may be an appendix to the CDD, or it
may be a totally separate source file. The choice is dependent upon other con-

siderations, such as the file management characteristics of the operating system.

Consistent with the notion of integrated design, the option of reformatting should
be related to other requirements. If the debugging package, for instance, is to
support source statement reconstruction, then the reformatted output must
accompany the generation of the CDD. The retrieval of source statements by
statement number demands the reformatting approach described above. Further-
more, if statistics collection is to be controlled from a level higher than the
programmer level and if the statistics collection function is supported by the
CDD, then its generation (and thus the reformatted source generation) may not

be optional at all.
9.7.1 PROGRAM VALIDATION

Two provisions of the program validation function as described in Section 4
should be directly incorporated in the HOL compiler. The first function is

the flow analysis required to identify the DD-paths. Since the first pass of the
optimizer phase performs flow analysis in any case, the construction of the flow
tables describing the DD-paths falls naturally into the optimizer domain. This
requires extension to the flow analysis process to accommodate the JAVS post-
mortem analysis requirements (i.e., to generate the formatted tables). If the
code straightener option is selected as part of the JOCIT enhancements effort,
then this function may be embedded in the straightener; otherwise, the present

flow analyzer must be modified to provide the DD-path identification.

The second function, value verification - the ASSERT, EXPECT, and TRACE
directives - should also be incorporated in the compiler by means of extensions

to whatever HOL is chosen for the LCF. If such language extensions are not
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possible, then other methods may be found to effect the same results (for

example, the use of parameterized DEFINE statements in J73).

Most of the preprocessing functions of JAVS, then, may be absorbed by the
compiler, and this eliminates the redundant requirement for source scanning and
passing. The remainder of the JAVS function - the report preparation - should
be retained as a separate tool as this neither duplicates cofnpilation functions

nor falls under proper compiler responsibility.
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SECTION 10 - LANGUAGE SPECIFICATION

The language specification for the HOL does not fall into the category of software
tools. However, the need for a comprehensive and complete specification is
clear. It is proposed that three different forms of language specification mate-

rials be developed:

° Standard reference document which includes all syntactic forms and
the details of the semantics including the identification of the
machine-dependent semantics which will fall into the categories of

"implementation-defined'" or "'undefined-by-this-description"
® Standard tutorial text for newcomers to the language
° Standard teaching guide for instruction in the HOL

10,1 STANDARD HOL REFERENCE

There are maay existing language specifications that are useful models from
which to derive a complete reference manual for the HOL (or HOLs) supported

by the LCF. The most complete among these are the PL/I ""Vienna'" descrip-
tion and the ALGOL 68 Report. Both of these descriptions suffer from much of
the same criticism leveled at SEMANOL, namely, that their very completeness -
and in the case of ALGOL 68, its conciseness - render them largely unreadable.
However, the approach taken in the ALGOL 68 Report holds a good deal of prom-
ise. For example, the two level syntax is unnecessarily complex and opaque

and could be replaced by a simpler BNF -type description supplemented by clearer

expository prose to describe the semantics.

The problem with most prose semantic descriptions is the failure to choose a
consistent model, or '""machine,' in which to express the effects. This short-
coming is relieved by the method chosen in the PL/I and SEMANOL approaches,
but while the modeling is consistent, the resulting description is simply too

dense and intricate to be useful, The ALGOL 68 '""machine' is somewhat more
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informal and therefore understandable. The overly concise language, however,
makes the report difficult to read. (This assessment refers to the style, not

the form.)

Perhaps such approaches as that employed in PASCAL will point the way to
successful description. In the meantime, CSC suggests that a standard HOL
description will be the most successful if sufficient funding is provided and if

the writers will give the same attention to clarity as has been given in the past

to other disciplines. An approach to preparing such a specification must include
sufficient review cycles and field trials to reach a satisfactory level of complete-
ness. Furthermore, the language specification should be prepared in machine-
rcadable form such that document editing facilities may be applied to accommodate

changes, updates, and corrections quickly.

The standard reference document should address the problems of the
implementation-acfined semantics. There is no profit in restricting the scope
of optimization for the arbitrary preference for a totally unambiguous specifica-
tion., A sensible balance can be maintained between portability and implemen-
tation frecedom that does not compromise the objectives of the LCF. The lan-
guage standard and its resulting portability will be mechanized not by the
language description, but by the compiler implementation tool. Therefore,
expending effort in achieving profitless rigidity in the specification defeats the
higher goals of the I.CF and raises the price of compiler development at no

gain to the community.

10.2 TUTORIAL TEXT

Inexperienced programmers new to the HOL will find the very thoroughness of
the standard reference document too intimidating for the purposes of introduc-
tory familiarity with the language. CSC recommends that a student text be pre-
pared that stresses fundamentals and includes numerous programming examples.
The CS-4 text and the NCR Student COBOL text are useful models of the approach

that might be taken to prepare such a document. In later stages of LCF

10-2




development, the tutorial text could be supplemented by programmed instruction
techniques employing video terminals connected to the LCF central site (or sat-
ellite sites) via the LCF network facilities. Once the student has mastered the
fundamentals and has achieved a level of comiort with the language, he should
be discouraged from using the tutorial text. To this end, the student text should
provide ready cross-reference to the standard description. Thus, part of the

learning process will be to gain mastery of the standard reference document.

10.3 TEACHING GUIDE

The principal tool in teaching the language will be the tutorial text described
above. However, to supplement this, a teaching syllabus should be prepared

which includes:

® Class schedules for courses aimed at beginning, intermediate,

and advanced levels of instruction

° Classroom examples

® Classroom problems

] Examinations

5 Organization of materials to stress the difficult language features
° Guide to machine usage of the HOL compiler, operating system

interface, debugging tools, and program validation tools

The dual goal of formal HOL instruction should include mastery of all LCI tools
as well as the HOL itself,

10.4 SUPPLEMENTARY MATERIALS

Useful supplements to the above language description materials include:
[ ] Language reference handbook summary

» Program validator handbook summary

e




@ Debugging tool handbook summary

° Compiler user's guide which presents the details of the proper use

of the compiler for each LCF-supported host and target including

such useful supplements as optimization hints, linkage conventions,

interface with other languages, etc.
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SECTION 11 - STATISTICS COLLECTION

The implementation of the statistics collection function within the L.CF should be

governed by the following basic functional design objectives:

° Static program statistics must be collected on a selective basis

for individual programs

° Dynamic profile measurement must be accommodated on a

selective basis

2 The raw statistical data must be placed in a permanent
repository from which it may be recalled by users and

administrators or managers

3 Execution measurement artifacts must be consistent with both
the program validator and run-time debugger requirements,

and all must share the same interface

® The production of statistical reports must be largely a
postmortem function, although this does not exclude
printing of compilation statistics for individual modules,

where the function is imbedded in the compiler

11,1 STATIC PROGRAM STATISTICS

The most logical place in which te locate the statistics gathering function is
within the HOL compiler. The main function of the static collector is the
recognition of primitive language forms. Since this is entirely consonant with
the syntax analysis function of the compiler, the collection function is imple-
mented at minor additional performance cost in the compiler. The main element
of the implementation is the insertion of counters indexed by language token.
Using the JOCIT architecture as a base, this function may be imbedded almost
entirely within the "precognition' or token recognizer routine., Of course, this

function may be implemented by a stand-alone processor, but this approach
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duplicates much of the syntax analysis phases of the compiler and presents a

language compatibility maintenance problem. Furthermore, as pointed out in
Section 3, statistics on such items as object program generation or optimization
must be collected by the compiler, so it seems reasonable to consolidate the

functions there.

The principal implementation questions are the interface between the collector
and the data repository and the form of the data repository. There are two
alternatives for choosing the data repository. The first is to define a standard
file (perhaps in the system library or at least one accessible to all accounts)
which is implicitly known to the compiler. The output of all data collection
would be expressed in tabular form and written as an update to the file. The
second approach calls for the data repository to be part of the user's own

account with access to it permitted from the statistics postmortem analyzer.

The problem with the second approach is that such a file is not protected from
inadvertent corruption by the user. The first approach potentially shares this
same failing, in that one would expect that the facility to update a system file
grants a general access which would permit willful or accidental corruption.

To some degree, this can be reduced through the use of special monitor calls
within the compiler and perhaps the grant of some special privilege to the
compiler program only which excludes update access for normal user programs.
This is a somewhat simplistic approach, but it would serve the purpose of pro-

tecting the statistics data repository at a small cost in system implementation.

Yet another possibility, and one which does not require system modification,

is to provide system data repository update routines in the form of library pro-
cedures whose code includes some means of verifying that the caller is one of
the sanctioned updaters; trespassers would be rejected. This verification
could take the form of passwords in the calling sequence. Ui course, this is a
good deal less secure than system level protection: the principal element of
security is in not publishing the passwords and iu I"eeping the identification of
the data repository file name a sccret as well, Such procedures are clearly

not impenetrable, but they do guard effectively against inadvertent corruption.
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There is no foolproof way to protect against mischievous interference, and since
the cost to the LCF for the partial or total corruption of the data repository is

not calamitous, elaborate security measures are probably inappropriate.

Both replacement and append modes of update are required. Static language
usage data belongs to the first category. A new compilation of module A occa-
sions the replacement of the static data record for module A within the data
respository. Error data is more appropriately inserted as an addition to, rather
than a replacement for, module A error data so that cumulative statistics may
be gathered. Cumulative statistics for all data probably are unnecessary and
only marginally useful; the file space required for the repository data base is
already very large, and the cumulative gathering for all data might expand it

beyond reasonable management.

A sample of statistical report is shown in Figure 11-1. It was produced by
the DECSYSTEM-10 J73 compiler, and it shows summary counts for all the lan-
guage forms suggested in the JLMT manual. This report was produced directly
by the analysis phase of the compiler. A similar report would be generated by

the postmortem analyzer suggested here for the LCF statistics-gathering facility.

The suggested categories of statistics to be collected and implemented within
the compiler for the LCF are:

® Total number of tokens
® Total number of statements
® Total number of statements by statement class

{declarative, processing, direct code, comments,

directive)

® Total number of statements by distinct statement type

(IF, GOTO, TABLE, ! COPY, assignment, etc.)
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JOVIAL V,091075 3/23/76 16:56 MUDULESACKEK, PAGE 1
+sACK=ACKER/IND/STAT

1, 00200 PRUC ACKER(MM,NN)U ;

2, 00200 BEGIN ®"ACKER"™

2. 00350 1TEM MM U |
3. 00400 IlEm 11 U ; |
4. 00500 ITEM NN U 3 |
5. 00600 TABLE VALUEL9JU 3

6. 00700 TABLE PLACEL9JS

7. 00800 UVERLAY VALUESACKER 3}

8, 00800 IF MM=0 3

9, 00900 VALUL([O)=SNN¢+1

i0. 00900 ELSE

i1. 01000 BEGIN ]
11, 01100 VALUE[O)=]1

12 01200 PLACE(@)=0 3

13. 01200 LULOP:

13. 01300 VALUE(O)SVALUELO)+1 3
14, 01400 PLACL(0)=PLACE(O0)+1 3 .
15. 01500 FOR 11:0 BY 1 WHILE II<=MM=1 3}

16, 01600 BEGIN ;

16, 01600 1F PLACELIIl=] ;

17 01700 BEGIN

i7. 01800 VALUER11141)=VALUELLLL)

18, 01900 PLACE(L1I+1)30 3

19, 01900 IF lI=MM=] 3

20, 02000 GUTU CHECK 3

21. 02100 6O0T0 Louop ;

22, 02200 END 1
23. 02200 It PLACEUI1)<>VALUELIL+1l)}

24. 02300 G010 LuOP ;

25. 02400 VALUELIL+1)=VALUELIL)

26, 02400 PLACE[11+1)=SpLACEII¢1)+1

27, 02400 END "11Iv

28. 02500 CHECK

28, 02500 IF NN<OPLACELMM)}
29, 02500 GUTU LOUP 3

30, 02500 END

31, 02500 END

Figure 11-1. Static Statistics Collection (1 of 3) .
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JOVIAL V.091075 3/23/76 16356 MUDULEZACKER, PAGE ¢
STATISTIC NAME UCCUKRENCES PEKCENTAGE
CHARACTERS 484 i
LINES 26
SYMBOLS 217 i
KEY WORDS 28 14,90
BEGIN 4 14,29
BY 1 3457
ELSE 1 3,57
END 4 18,29
FOR 1 3457 :
GOTO 4 14,29 :
IF S 1/.,86
1TEM 3 10,71
OVERLAY 1 357
PROC 1 3,57
TABLE 2 71414
COMMENTS 2 0,92
CONSTANTS 28 124,90
INTEGER 28 100,V
SIGNS 100 “qo,. ¥
+ 10 10,0
- 2 20
= 12 12.0
<= 1 1.0
<> 2 ZQU
’ 1 1.0
$ 4 4,V
) 6 20,0
( 1 1.0
) 1 10
{ 20 20,40
] 20 2V eV
ABBREVIATIONS/pEFiNe FORMAL PARAMgTERS 6 2416
S 1 10,067
(V) S 83,33
NAMES 53 24,41
LABEL 6 11,32
PROC 1 i.89
TABLE 20 /.4
SIMPLE-ITEM 22 4i,.51
DECLARATIONS 7 L
SIMPLE-]ITEM 3 42,86
NON=BASED 3 10U,V
TABLE 2 T28,57
OVERLAY 1 14,29
PRGC 1 14,29
STATEMENTS 32
SIMPLE ASSIGNMENT 9 28,13
FOR | 313
1F 5 15.63 i
Figure 11~1, Static Statistics Collection (2 of 3)
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STATLISTIC NAMg UCCURRENCES
G070 4

PROGRAM SUMMARY

DATA/VARIABLES QUUVOO = VULLIIL
INSTRUCTIUNS/CUNSTANTS 400000 = 400UL3
EXTERNS: nONE

INTERNSS ACKEK

FILES REFERENCED; NONE

26 LINES 0 MESSAGES

ELAPSEL TIME 2,287 SeC

Figure 11-1, Static Statistics Collection (3 of 3)

JOVIAL V,09107S 3/723/76 163856 MUDULE{ACKER, PAGE
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Total number of data declarations by type (integer, real, etc.)
Total number of processed constants by type

Total number of subprograms, also segregated into procedure

and function’ categories

Total statistics on structure declarations (to include table
packing class, type of table, number of dimensions, number
of constituent fields, distinction by parallel or serial form,

occurrence of multiword or word-spanning fields, etc.)
Total number of COMPOOL definitions

Total number of unreferenced declarations by class (procedure,

table, item, whether COMPOOL or LOCAL, etc.)
Total number of copy definitions
Maximum procedure nesting level

Counts by n-level procedure nesting (e.g., number of
procedures at outer scope, number of procedures at first

nesting level, number at second level, etc.)

Maximum block nesting

Counts by n-level nesting

Maximum FOR statement nesting

Counts by n-level FOR statement nesting

Total error count and counts segregated by error number
Error count by statement type and severity level

Error count by procedure (including functions and closed

routines)
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® Count of optimizations performed by class (common expres-
i sions recognized, constant arithmetic performed, variables
i redistributed from loops, operations reduced in strength,

| dead stores deleted, common values hoisted, delayed stores

inserted, etc.)

® Count of called procedures by nuinber of references
(i.e., number of procedures called zero times, once,

twice, etc.)

The following object program and compilation statistics also would be collected:

® Object program data size, total and segregated by procedure

) Object program code size, total and segregated by procedure
° Number of registers used by procedure

(] Number of REF items

° Number of DEF items

) Number of COMMON block references

[ Size of required data space for each based procedure

(relevant to J73)

® Count of library subroutine references by routine
° Count of generated instructions by instruction mnemonic :
° Total, average, and percentage of generated instructions

by statement class

° Total compile time

® Compile time per statement

° Compile time per token

° Compile time per source character

11-8




° Compile time per source character excluding comments

® Compile time per source character excluding comments

and redundant spaces
s Compile time per statement by statement class

® Compile time per phase segregated by subfunction (e.g.,

total analysis time, time for generating source listing if

requested, time for reformatting, time for assembly listing

editing, etc.)
° Maximum space requirements by phase and subfunction

[ Acquired and released space by phase

o Sizes of dynamically-acquired tables
° Sizes of intermediate files
® Cost of intermediate files expressed as the product of

storage blocks and seconds of allocation

° Total number of input (source, copy, and COMPOOL) records

E & read and average record size in bits (or words or bytes)

® Total number of output records written (updated source,

object file, statistics file, printer file)

11.2 DYNAMIC PROFILE MEASUREMENT

It is proposed that the design for dynamic profile measurement be integrated

P a

with that discussed later in Section 13 for the instrumentation of performance

AP

analysis within the program validation context. In order to implement the
: timing component ¢f the profile, two approaches suggest themselves. The
5 first is implemented solely through the CDD (Composite Debugging Dictionary)

interface. This dictionary, generated by the compiler, contains statement

b

—
N S

description information. It is possible for the code generator to provide

information entries in the code file which contain total execution time for
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each statement., The EDITOR then includes this information in the CDD that it

constructs. Then, execution measurement proceeds as follows:

° The object program is loaded, and breakpoints are

implemented at thz beginning of each basic block

® The program is executed, and the implanted break-
pomts merely increment a counter; i.e., a running

sum is maintained for each basic block

[} Postmortem analysis processes the counters and constructs
a histogram by basic block (or some other unit, if desired)
which is the product of the count and the sum of the execu-
tion times for each statement in the block (obtained from

the CDD); other reports also may be generated

This approach is entirely independent of the operating system and may be imple-
mented for any target environment., The outputs of the run (i.e., the basic
block counters) are placed in the data repository. The postmortem analysis
may then be activated at intervals independent of the actual run, Of course, the

programmer may invoke the analysis as part of his job if he so desires.

The second approach is more sophisticated and does not disturb the measured
program with implanted instrumentation (although the first approach, which
derives rather than measures the timing, does not skew the results because of
the implanted instrumentation). The following suggestion makes certain assump-
tions about the operating system under which the user code executes and may
not be considered a general solution. In this approach, the program to be
measured executes as a '"co-task.'" A timing program is run in parallel with
the program to be measured. They execute as equal subtasks of the user task.
The timed subtask executes for a prespecified interval, and then the timing
subtask is invoked. The only function of the timing subtask is to record the
program location counter for the timed task as it existed when it was interrupted

for subtask slicing. In this way, the timing task obtains a pseudorandom
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sampling of the execution location of the timed task. This location counter
data is stored in a table that is inserted at task termination into the data repos-
itory, Postmortem analysis may then be invoked to translate the sampled data
into a histogram of execution profile according to any selectable granularity

(statement, basic block, or even procedure).

This co-tasking approach is suggested to improve the randomness of the instruc-
tion counter sampling. If an entirely separate task were invoked to perform the
sampling (which is effected by reading the saved location counter in the timed
task's control block), the counter would reflect the state of the task when its
time slice was interrupted which may be for a variety of reasons other than
time~-slice end (monitor call, I/O request, etc.) and thus not a truly represent-
ative sampling of the counter over a contiguous spectrum of the time of the

object task's execution,

The implementation of the second approach requires that a subtasking capability
be implemented in the operating system that permits micro-time-slicing within
the task which is independent of the time-slicing which the system employs for
intertask commutation, Furthermore, the intratask slicing must occur as if
the timed subtask were executing continuously; i. e., the timing subtask is not
activated on any event except that of micro-time-slice expiration, The micro-
time-slice interval may be less than or greater than that of the macro interval;
it merely needs to be chosen so as to provide sufficient points for constructing
a meaningful histogram while imposing the least disturbance on the system.
Clearly, a micro~slice much smaller than the macro-slice will greatly perturb

the overall system performancz through a deluge of clock interrupts.
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In addition to histographic profiles, the basic block counters provide raw data

for any number of statistical analyses, including:
° Single statement average execution time by statement type

® I'requency of execution by statement type (less important than
actual execution time but useful when displayed against error

statistics for the same statement type)

° Relative frequency of execution of parallel paths (data which

may be used hy the optimizer)
® Identification of unexecuted paths
o Timing and frequency of system and library routines

The primary purpose of the execution profile is to identify the most heavily
travelled regions of the program under measurement., From the point of view
of IIOL appraisal, the pro may be used to identify unused language features,
misused language features, and language features meriting optimization atten-
tion. TFor the user or program manager, the data is used in a program valida-
tion context as described in Section 13. In this case, recognizing the highest
frequency program regions gives some guidance in overall program tuning and

performance improvement,

While the first method proposed above is less costly than the second, it places
some considerable burden on the code generator to compute the statement

IFor some machines, the timing is not easy to calculate and may be
More

timings.,
only approximate (within some acceptable limits of accuracy, of course).

importantly, this method precludes timing of system routines - the second
method supports timing of system code executing as part of the task - or library

routines for which statement timing data is unavailable and implantation is

impractical.
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11.3 STATISTICAL SUMMARIES

The raw data collected by either of the above approaches are sufficient to develop
all of the reports suggested in the JLMT document discussed in Section 3. The
basic histographic profile displays the granules of the program (statements,
basic blocks, or procedures, for example) along the abscissa, and percentage

of total execution time spent within the granule on the ordinate. These are, of
course, derived differently in the two methods. The first collects the summary
times for each granule directly; the second traps the location counter which must
be correlated to the granule. In :he first method, the times must be reduced to
percentage frequency; in the second, the percentage is directly computed as the
quotient of the individval counters divided by the total number of samples taken

by the timing task.

In order to support both the statistics collection and program validation func-
tions, the collected execution data must be appended to the data repository for

the program under measurement. This permits both individual run and cumula-

tive statistics analysis.
The reports generated are presented in, but not limited to, the following list:
® Basic histographic program profile

® Histograms of both static and dynamic usage of language
features; the dynamic display will be by both frequency

of usage and execution time

° Histograms of static and dynamic usage of library routines

] Histograms of static and dynamic usage of variables and

constants by type

® Summaries of language definition classes: block-local,
module-global, DEF, REF, copy-originated, COMPOOL-
defined, and undefined



Histograms of usage of primitive operators (+, =,

AND, etc.)

Histograms of usage of programmer-defined procedures and

functions

Histograms of time spent in FOR~loops and non-formal loops

(i. e., those defined by backward branches)

Histograms of programmer label references (dynamic) to aid
in locating heavy GOTO usage for possible restructuring by
CASE or IFOR, for example

Error histograms by language feature

Program execution failure histograms by language

feature and by particular program region

Error histograms by error severity, class (processing,

declaration, etc.), and error number

Cumulative error statistics by individual module (error
rate as a function of the number of times the module is

compiled)

Cumulative histograms of program failure by program
granule (to aid in locating troublesome routines that are not

necessarily a function of language usage difficulty)

Compiler performance profiles showing size and speed of
the compiler as functions of input data characteristics such

as number of source characters or tokens or statements
Graphs of object program size versus source program size

Annotated source listings that give execution histograms

alongside formatted source statement listings
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11.4 CONTROL OF THE STATISTICAL-GATHERING PROCESS

It is suggested that two methods of invoking the statistics collection process be
implemented. The first is user selection, in which the compiler is instructed
both to create the CDD and, optionally, to collect the compilation statistics
described earlier in this section. The user may at any time invoke the post-

mortem analysis routines to create any of the available summaries and displays.

More important to the LCF function is the provision for LCF or programming
managers to invoke statistics collection. The compiler, for example, can be
made sensitive to flags in system tables to which access is provided either
through direct inspection or via monitor calls. The flags would be set and
reset - by on-line function or through the application of some periodic process -
by the relevant managers. The managers could select entire projects or indi-
vidual accounts or even individual programs for activation of the statistics-

gathering function.

Execution monitoring can also be controlled in this dual fashion. It is of central
importance that the statistics gathering tool be invocable by the system managers
according to any sampling criterion they deem useful. While CSC endorses user
selection as a supplement to this, it would limit the effectiveness of the process

to grant invocation exclusively to the user.
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3\ SECTION 12 - COMPILER VALIDATION

As presently constructed, the JCVS tests provide an excellent base for the com-

AR MR

piler validation tool to be incorporated into a LCF based on either (or both) of
the JOVIAL/J-3 or JOVIAL/J73 languages. In order to realize their maximum
potential, CSC recommends the enhancements described in the following

subsections.

i SN S 5 Do 35

12,1 EXTENDED LANGUAGE FEATURE TESTING

The JCVS modules should be extended to include more exhaustive testing of the

following language forms:
® Input/Output statements (J-3)
° ENCODLE/DECODE statements (J-3)

° MONITOR statements (J-3)/! TRACE directive (J73)

® BIT, BYTE, and table entry assignment, exchange, and relationals
e Based procedures (J73)
° Procedure parameter passing (including passing formal parameters

as actual parameters)
] Double precision operations

12,2 OPTIMIZATION TESTS

Test modules should be included to exercise the global optimization capabilities
of the compiler. Ilowever, the tests are not conveniently made self-checking

and would probably contain certain target machine or compiler logic dependen-

cies. The best analysis technique is sight checking of the generated code and
cptimizer messages. The proper construction of comprehensive optimizer
tests will include complex flow and a thorough exercise of procedure calls and

associated spoil (or side cftect) logic,
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12.3 INTEGRATED FEATURE TESTING

Modules which combine language features and which are organized as independ-
ent modules utilizing COMPOOL/copy facilities should be added to the JCVS
set. Tests sherld also include complex link-edits of compiled modules. Tests
constructed to meet these requirements need not ke self-checking, but should
be thoroughly documented. The test documentation should specify program
inputs and expected program outputs.

12.4 AUTOMATED TEST CONSTRUCTION

The automated test selection feature of the J-3 JCVS should be applied to the
J73 JCVS. Furthermore, this facility should be expanded to permit rapid and
convenient creation of tests in which the selection criteria is based on language
features (much as the appendixes to the J73 JCVS User's Guide suggest). The
test construction facility should be made available to the compiler implementa-
tion team to assist them in integration testing during compiler development.
This would provide an invaluable aid to implementers and should add signifi-

cantly to this activity.

12,5 JCVS USER'S MANUALS

The current level of JCVS documentation should be enhanced to provide more
specific information on test construction. Furthermore, additional documenta-~

tion on the nature and objectives of each test module should be included.

12,6 SUPPLEMENT TO JCVS

During the course of the JOCIT implementation, approximately 200 JOVIAL/J-3
tests were devised to aid in component and integration testing, These provide

a useful supplement to the JCVS tests, but they require certain enhancements.
The first requirement is to standardize the result reporting technique and to add
self-checking logic where it is currently omitted. The tests themselves then
must be subjected to rigorous evaluatior " >fore they can be certified as standard

validation supplements. These tests - known as the J-series (disc-resident
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under GCOS) - are readily adaptable to other HOLs. Some 48 of these tests

have been rewritten in J73 and currently are used as supplementary validation

tests for the DECSYSTEM-10 and Hot-Bench J73/I compilers. The adaptabil-
ity of the tests to new targets is facilitated by the use of DEFINE parameters

for machine characteristics.

12.7 ACCEPTANCE PROCEDURES

The purpose of compiler validation is to provide measurement criteria by which

compiler-buying agencies can objectively determine that the developed compiler

meets the requirements of the language specification. The existence of standard,

debugged JCVS tests is the main requirement in fulfilling this validation objec-

tive. Within the scope of the LCF, standard validation procedures which
describe the tactics of the compiler measurement/acceptance activity should be
prepared and published. These procedures would be applied for each rehosting

and retargeting effort undertaken within the LCF community. The availability

of these standards will reduce the cost of the activity and raise the level of

objectivity as well. The standard validation procedures are the logical com-

panion to the standard tests.

wrsey

may
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SECTION 13 - PROGRAM VALIDATION

The JAVS technology, discussed in Section 5, provides a suitable basis for pro-
gram validation tools within the LCF, Assuming that the first implementation
of an L.CF most likely will be oriented towards the JOVIAL language in general
and J-3 in particular, JAVS can be incorporated directly. Its availability in a
J-3 L.CF will provide field testing experience which will add an objective meas-
ure of its worth and give an opportunity to determine those aspects of the tool

meriting enhancement or modification to broaden its applicability.

Since program validators do not yet exist as front-line production tools, the
incorporation of JAVS into the LCF may be treated like something of an R&D
venture. In the future, it may be the case that program validators will exist
as essential elements of the program production process, but that clearly is
not the case today. The employment of an untried technology such as JAVS
really presents no risks either to the LCF sponsor or to the subscribers if
treated as a potentially cost~reducing component meriting exposure in an R&D
module. Perhaps certain pilot projects may be underwritten by LCF users
which will specify JAVS-like validation as an integral component of the

implementation.

It is recommended that JAVS be included in the standard tool repertoire for a
J-3 LCF. The first level of such an LCF implementation should incorporate
the tool as it is presently constructed. The potential shortcomings observed in
Section 5 may then be exposed and examined, and field results may be analyzed

to determine the kinds of enhancement required.

Subsequent levels of JAVS (or JAVS derivative) implementation must address
certain deficiencies observed in the analysis of Sections 1 through 6. Further-
more, remaining faithful to the principle of integrated tool development requires
some reassessment of what may be observed as redundancies with other LCF

components, These ideas are discussed in the following subsections.
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13.1 PROGRAM VALUE VERIFICATION

The value verification provisions of JAVS - the TRACE, EXPECT, and ASSERT
directives - are morce suitably implemented directly in the HOL., These are,
for the J-3 language, translated by JAVS into MONITOR statements in any case.
The JAVS TRACLE directive is almost entirely redundant with the J-3 MONITOR
statement, and since there is the provision in the JOCIT compiler for the
optional suppression of MONITOR statement compilation, and since the output
of TRACE - and EXPECT and ASSERT as well - is simply displayed and not
collected with other performance data, there is no justification for the

redundancy.

Two suggestions ecmerge from the above observations. First, the three direc-
tives should be implemented as extensions to the J-3 language. TRACE could
be eliminated entirely, although there is some marginal convenience in its use
versus MONITOR. TFor example, TRACE ON ABC $ ... TRACE OFF ABC $

is less clumsy to write than its MONITOR equivalent:

ITEM T'ABC B S

MONITOR (T'ABC) ABC $ ...

T'ABC =18 "EQUIVALENT TO 'TRACE ON ABC'" ...
T'ABC =03 "EQUIVALENT TO 'TRACE OFF ABC'"

The scceond suggestion is to include ASSERT and EXPECT results as part of

the JAVS library output during test measurement rather than simply displaying
the results on the MONITOR list file. Postmortem analysis could then provide
for annotations to the source listing ~ much as DD-path exercising is shown ~ to

pinpoint the failed assertions and expectations,

13.2 INSTRUMENTATION

As pointed out in the JAVS analysis, the approach to instrumentation adds con-
siderable overhead to the size and cousiderably reduces the speed of the
compiled programs. The source level of instrumentation which JAVS employs

must be considered an interim solution to a problem which, within the scope of

13~2
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an integrated LCF, demands a more encompassing solution, For the first ievel
of LCF implementation - assuming JOVIAL/J-3 as the HOL - the present

JAVS approach gives the LCF community a chance to evaluate the JAVS method
of program validation. For future LCF versions, the integration of the JOCIT
compiler, the JAVS methodology, and the support debugging tool may be
expected to vastly strengthen the approach.

It is proposed that DD-path identification be included as supplementary informa-
tion in the compiler-constructed CDD. Implanting breakpoints at each DD-path
origin and convergence may be effected at the machine language level., At
execution time, DD-path tracing is effected by implanting TSX instructions (or
the equivalent) at the origins and convergences of the paths - the points cre
located through the CDD - which provide linkage to the run-time DD-path data
gatherer. With this approach, the object module is not inflated in size, and
the run~time cost of data collection is reduced as well, It is likely that only a
very few instructions need to be executed to record the DD-path tracing;
namely, to store the address contained in the TSX register and return. Subse-
quent data reduction of the count data then may be correlated with the DD-path
descriptors in the CDD to permit the same level of source-language correlation

provided for by the present JAVS.

This approach does not change the results, only the implementation technique;
but the performance improvement so realized is of significant importance to
both the user and the eomputer installation managers. It is even possible to
conceive of a totally integrated approach to performance monitoring; i.e., the
same approach that permits JAVS-like data gathering serves the statistics
gathering function equally well. Any program resident within the L.CT then is

subject to monitoring by either the user or the installation managers.
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13.3 SOURCE TEXT FORMATTING

The source text formatt';ng provisions in JAVS also may be more conveniently
implemented within the analysis phase of the compiler. The DECSYSTEM-10
J73/1 compiler employs an integrated source level formatter as part of the
token recognizer within the analysis phase. This formatter provides all of the
functions of the JAVS formatter including DEFINE expansion (which, in J73/I,
includes parameterized DEFINEs). This is as useful a place for the existence
of the formatter as the JAVS program. It is perhaps more useful because the
user must compile his program, and the optional reformatter imposes only
modest overhead on the compiling function - less than the cost of invoking yet a
separate processor for the purpose. Although this is a marginal concern, it
does scem desirable to include reformatting as part of the standard JOCIT com-
piler rather than restrict its availability by providing it solely as an adjunct to
the validation function. CSC does not recommend that the reformatting function
be deleted from the current J-3 JAVS (JOCIT does not presently include a source
reformatter) but rather that JAVS-derivative implementations in the future

should defer this function to the compiler,

13.4 I'LOW ANALYSIS

The DD-path-oriented flow analysis of JAVS is somewhat redundant with the
flow-analysis capabilities of the JOCIT compiler. If code straightening is
added as an enhancement to the present optimization capability, a good deal
more than DD-path flow analysis will be provided. The compiler, then, can
generate the raw data currently obtained in STEPs 1 and 5 of JAVS and insert

it into the CDD for subsequent JAVS processing at practically no cost.
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Viewed in this way, the JAVS function then no tonger needs to employ source
language processing at all in order to identify the DD-paths. Even the state-
ment type data can (and should) be inserted in the CDD, which serves both

JAVS and the statistics-collection functions as well, Section 11 states additional

details of the requirements to support statistics-collection.
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SECTION 14 - PROGRAM DEVELOPMENT/INTEGRATION TOOLS

While the first objective of the LCF is to provide centralized control over all
aspects of IIOL development, maintenance, usage, and growth, an equally impor-
tant function is to serve the program development needs of the subscribers.
Clearly the compiler is the principal instrument of this latter goal. Perform-

ance measurcment tools support the language use and system development as

well. In addition, more fundamental tools, while not necessarily oriented to a
particular IIOL, are essential to a thoroughly integrated LCF. The proposed

tools are:

§.,
<
#
Z
£
g

® Source module text editor
® Object program linking loader
° Interactive and postmortem debugger

® Source language translator(s)

An important design objective which distinguishes these tools from others pro-
posed in this report, is that these support tools should be designed to be as inde-

pendent of language as possible. While the compiler, and to a lesser degree,

A S S A ST

the program validator, are by definition language-specific, these supplementary
tools (with the obvious exception of the translator) need not, and should not be.
Differont operating systems offer these tools to varying degrees of conformance
with the proposed functional requirements. To the degree that the host system,
on which the pilot implementation of the LCF is undertaken, lacks these require-
ments, there will emerge the need to design and implement the tools. A cursory
analysis of four operating systems under which an implementation of the LCF
might be considered reveals the degree to which existing tools meet the require-

ment. Table 1:1-1 summarizes this analysis. The four systems are:

® UNIVAC 1108/INFONET-CSTS
@ DECSYSTEM-10 Timesharing
® 1IS-6000/MULTICS

° [1S-6000/GCOS Timesharing
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Table 14-1. Comparison of Existing System Support Tools

Text
System Editor Linker Debugging Translators
INFONET/CSTS E- E E- I
DECSYSTEM-10 A A A+ N
MULTICS I E E N
GCOS A I I N

In the table, the codes have the following meaning: N - nonexistent; I - existent
but inadequate; A - existent and adequate for a first-level implementation of the

LCF; and E - excellent mating of the performance of the tool with the requirement.

It should be observed that the DECSYSTEM-10 offers a variety of text editors

the composite of whose features would rate an "E." However, no single editor
alone is really sufficient. MULTICS is deficient in providing no true line edit-
ing facilities at all. Only INFONET/CSTS and MULTICS have conceived of and
implemented integrated linking and debugging facilities. CSTS is deficient in

its debugging capability by failing to support any HOL but FORTRAN (JOVIAL

may be supported te a large degree, but procedure name scope and based data
are not accommodated). None of the systems provides language translators of
the kind envisioned for the LCF, romely, the facility to translate to command/
control-oriented HOLs (except for CSTS on which a SYMPL to J73/I translator

is available).

14.1 SOURCE MODULE TEXT EDITING

The general requirement for source module text editing is obvious, and does
not merit much discussion. A summary of the specific requirements is given

in the following paragraphs.
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14.1.1 EFFICIENCY

Text editors are one of the most heavily used components of any interactive

system. In order to impose the minimum performance degradation on the sys-

tem, the editor should be written for maximum internal efficiency in terms of
speed, compactness, and optimized file access. For those systems supporting

reentrant programming, the editor should be written as a shared program.
14.1.2 LINE EDITING FACILITIES

The editor should be designed to permit the creation and editing of keyed files.

Lines, identified by key number, should be addressable, and line ranges should

be permitted for all editing functions. Insertions should be convenient. A well~
designed editor avoids annoying idiosyncracies such as that found in the
DECSYSTEM-10 SOS editing program in which operating on an existing file with-
out keys causes the file to be automatically numbered in increments of 100 with
a maximum line number of 99900. Large files are accommodated by dividing
the file into "pages' of 1000 lines each. Subsequent editing commands must
include page number as well as line number specification, the former of which
is clumsy, error-prone, and poorly documented. TECO and QEDX (the latter
under MULTICS, the former under both DECSYSTE M-10 and MULTICS) do not

accommodate line numbers at all. In some circumstances, DECSYSTEM-10

TECO cven destroys line numbers in a keyed file. The GCOS timesharing editor
manipulates line numbers as a special textuz! component of the source line.
Only CSTS treats line numbers as true file keys and permits insertion by means

-6
of fractional line numbers (to a precision of 10 +1).
14.1.3 SEARCII AND SUBSTITUTE

This requirement specifies that the editor will permit the location and replace-

ment of textual strings.
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14.1.4 CONTEXT EDITING

The editor should accommodate identification of lines by some contextual
condition (e.g., change the string "ABC" to "ABC+1" in all lines containing
"IF BB=0"). The contextual delimiting should be exclusive as well as inclusive.

Multiple contexts also should be provided.
14.1.5 CURSOR CONTROL

the user should be able to control cursor position within the edited line (e. g. ,
to the beginning of the line, to the end of the line, to any particular column posi-

tion, to the beginning or end of any particular string, etc.).
14.1.6 "WILDCARD'" CONSTRUCTIONS

The user should be able to specify strings in which certain characters are
replaced by a wildcard character (i.e., one which is matched by any character).
This permits such editing functions as: delete all strings "XX? ?'"" (where " ?"
represents the wildcard character). The user should be able to override editor-
defaulted wildcard representation, and the editor should support single and
multiple wildcard constructions (e.g., delete all strings ""XX(?)", where " ?" in
this example represents a multiple wildcard character, would delete '"XX(1)",

"XX(A+B)", etc.).
14.1.7 EDITOR VARIABLES

It is often convenient to generate certain string constructions. To this end, the
user should be able to define editor variables, assign values to them, and sub-
stitute or insert them as textual strings in appropriate contexts or to use their
values as components of editing instructions. For example, A="JULY 4 1976"
would assign the quoted string to the editor varianle %A. Then the command
insert string %A at the end of lines 100-999 would cause the string '"JULY 4
1976" to be inserted as directed. Similarly, %X=1 would assign the numeric
value 1 to the editor variable 7 X; the variable may then be used any place in

the editing syntax in which numeric values are appropriate.
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14.1.8 EDITOR FUNCTIONS

It would be useful to permit the definition of editor functions, i.e., callable
strings of editor commands that return a value which may be used in whatever

context the function is referenced.
14.1.9 REPEATED CONSTRUCTIONS

Analogous to HOL loop statements, repeated editor constructions could be used
to apply the same editing commands over a range of lines or contexts. In par-

ticular, references to functions from within repeated constructions may be use-

ful in creating repeated text patterns which differ by some computable string
clement (c.g., to generate a string of comma-separated, monotonically increas-

ing integers).
14.1.10 CONDITIONAL COMMANDS

Analogous to I statcments in HOLs, conditional commands could be employed
to permit more tailored contextual analysis for the application of other editing

commands.
] 14.1.11 TIEXT MOVING AND COPYING

g : The user should have the facility to move and copy blocks of textual lines. The
CUT and PASTE functions of the GCOS editor, for example, are unnecessarily

. claborate commands to achieve what is essentially the "move' function.
14.1.12 USER INTERFACE

The editor command language should present an accessible and easily mastered
user interface. TECO, for example, is quite a powerful editor, but its com-

mand syntax is sufficiently obscure to hinder accessibility to its more powerful

features. The CSTS editor language is quite concise, but somewhat less rich,
and thus more casily mastered. Brevity is important in editing for the basic

functions, but the more complex might profitably borrow from HOL-like syntax

to encourage familiarity.
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14.2 OBJECT PROGRAM LINKING LOADER

There is virtually no contemporary operating system that does not offer some
kind of linking loader. However, few of these have been implemented with the
kind of careful attention to design, performance, and user interface that such a
fundamental tool deserves. Large program system development, in which
perhaps hundreds of modules are combined, demands the utmost in linking con-
venience. The design of the linker must be carefully integrated with all aspects
of language processor support and must be especially sensitive to the charac-
teristics of the file management systerm. More than one linker whose internal
logic was efficiently conceived faltered in performance because of excessive file
management demands. Furthermore the well designed linker supports the full

range of languages for which compilers are provided within the LCF.

CSC suggests that the LCF implementation not make the assumption that, for
example, there is no compelling need to replace the link editor just because
programmers have managed to circumvent its primitive features for several
years. Such an argument is analogous to the argument assembly language pro-
grammers have against the use of HOLs. The basic linker features described
in the following paragraphs are the minimum requirements and are presented
without distinguishing between two fundamental approaches to linking: static
linking and dynamic loading. Almost all of the features outlined are equally
applicable to either scheme, the choice of which depends upon other system
design features lar zely independent of HOL support. Note that of the systems
discussed above, on13\/ MULTICS offers dynamic loading as the proper linking

service.
14.2.1 USER INTERFACE

Most linkers seem to have been designed from the inside out with little attention
to the convenience of or respect for the user. To support the features listed

herein, a command language of some kind is required. CSC suggests it obey a




2 b

Ry e

syntax similar to the onerating system's command syntax for maximum user
interface consistency, and that it have constructions to aid the programmer
which are not overly verbose or ceryptic. The more exotic features of the linker
should he expressable in a straightforward way. CSC suggests, in particular,
that discrete paths in an overlay tree be identifiable in the command syntax as
unique "'scopes' such that labels, equate names, and even module names are
scope-protected and will not interfere with occurrences of the same name at

outer or parallel scopes.
14.2.2 MODULE PLACEMENT

The user must be able to place obiect modules in the linked program in any par-

ticular order. or the user may let the linker choose the order.
14.2.3 AUTOMATIC MODULE RETRIEVAL/LIBRARY HIERARCHIES

The user must be able to define a library hierarchy to specify the order of
library scarching for automatic module retrieval. Automatic module retrieval
is an essential element of good linker design. The retrieval is based on exter-
nal symbols defined in the program for which control dictionary entries for

the symbols appear in the object module. At a minimum, the linker will use
undefined external symbols as scarch arguments for looking up the control dic-
tionary entrics in the user-specified library hierarchy, one module at a time,
until the missing symbol is found (or until all modules in the hierarchy have
been searched and the symbol is undefined). Of the systems discussed earier,
only CSTS and MULTICS have integrated in any way the design of object modules
and libraries with the requirements of program load.ng and inter-module refer-
ence. GCOS, which borrows from the carly IBSYS technology, does not provide
for any automatic module retrieval within‘a user hierarchy, the definition of

which it also does not support. DECSYSTEM-10 is only slightly advanced in per-

mitting certain sanctioned language processors to set unique bits in the object




module control dictionary which the linker uses as flags to trigger system library
searches for undefined symhols. Unfortunately, it makes no provision for creat-
ing user library hierarchies and insists on explicit inclusion of all modules.
IBM-370/0S/VS and its variants at least permit the user to name the files he
wishes the linker to have access to during the linking process, but the structure
of partitioned data sets limits the number of external symbols possible for each
module to six: the module entry point and up to five "aliases,' or auxiliary entry

points.
14.2.4 OBJECT MODULE FORMATS/OBJECT FILE ORGANIZATION

When considering implementing a linker for the LCF, the choice must be made
whether or not to support only the LCF HOLs or to support all HOLs supported
by the system under which the LCF is implemented. If only the LCF HOLs are
supported, then the object module format and object file organization may be
tailored to integrated requirements and to realize efficiency. Relating to the
previously discussed subject of module retrieval, the object file organization
will best serve these needs if all external symbols are collected in a single file
dircectory much as the index is organized in indexed-sequential files. This will
result in much more efficient performance by reducing the number of file
accesses required to resolve external symbols automatically. Such an approach
is likely to be at odds with current operating system file design (with the excep-
tion of CSTS and MULTICS, which support these concepts to a considerable

degree).

An even more radical approach to this problem is to design the object module
formats in an entirely machine-independent way. IBM 370 standard object and
load module formats are examples of straightforward design, much of which is
actually machine-independent. Such an idea significantly enhances the retarget-
ability and rehostability of the compiler since the object module formatter ele-

ment of the compiler editing phase is written only once.
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14.2.5 SYMBOL DEFINITION

The user often will find it convenient during large program development to link
incomplete programs. To assist him, the linker should permit the user to define
external symbols as part of the control input. For example, EQUATE ERRORS=
JOVMOV would resolve references to the external symbol JOVMOV to the loca-
tion computed fer the external symbol ERRORS. Absolute equates also should be

supported.
14.2.6 BOUNDARY ALIGNMENT

The user should be able to specify boundary alignment for any externally relo-
catable element of the link such as a module, control section, or common block.
The boundary alignment could be expressed as an absolute address or as some
function of the '""next available' location, such as double-word alignment, next

byte, or next page.
14.2.7 AUTOMATIC COMMON PLACEMENT

Very often, linkers place peculiar restrictions on the placement of common
blocks. Aside from the ability to place them at his will, the user should be able
to expect the linker to place them sensibly, i.e., at the highest point in the link

tree to which only downward references result.
14.2.8 CLOSED TREE STRUCTURES

Most linkers support only simple tree structure overlays. This is clearly not
sufficient for most large program organization efforts such as command/control
systems or compilers. One should be able to load independently-higher seg-
ments of the tree without necessarily loading the intervening branches. For

example, it should be possible to express the structure shown in Figure 14-1,

Thus, references to F would entail loading of C but not necessarily of either

D or E; and references to G would not entail loading of either LEG 1 or LEG 2.
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Figure 14-1. Sample Tree Structure

14.2.9 AUTOMATIC SEGMENT LOADING

The user should be able to specify which of the segments in the tree are to be
automatically loaded when dynamic reference is made to symbols defined within
them. Furthermore, to support the closed tree concept, the user should be
able to define a path in a parallel subtree, which would entail automatic loading.
In the previous example, the user might specify that when loading C, D and F
are, in fact, automatically loaded; or that C is loaded alone and references to

F automatically load E.
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14.2.10 LISTING OUTPUT

Listing output by the linker should be optional and include a concise and readable
memory map, cross-reference listing of external symbols by module reference,

and comprehensive diagnostics.
14.2.11 COMBINED CDD

To support statistics collection, program validaticn, and debugging, the linker
should be able to process the CDDs from each module and combine them into a
single CDD for the linked program. The combined CDD would be a part of the
loadable module constructed by the linker and thus facilitate the functioning of
these other tools. Furthermore, the CDD ideally should not be core-resident
(it is too extensive for that) but should be readily accessible through an inte-
grated file management interface. To this end, the symbols in the CDD should
be combined into a single hash-searchable segment which functions as an index
into the remainder of the CDD. This makes reference to the CDD much more

efficient during interactive debugging.
14.2.12 PARTIAL LINKING

To facilitate construction of large programs, it should be possible to link por-
tions of the program independently, form them into partial link modules, and
present them as input into a larger link activity. This idea is analogous to
independent module compilation. To support this, the linker will construct
linked modules in a form which is based on the relocatable object module for-
mat so that the linker can accept its own output as input once again. Further-
more, the user needs to be able to specify in partial linking which external
symbol definitions within the link are to be retained as external symbols for
resolution of references from outside the link. This approach makes a much
more efficient use of the system resources by not requiring a total relink when

only a single module or a few modules within an overlay leg are recompi’ed.
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14.2.13 MULTIPLE ELEMENT PLACEMENT

3 Most linkers object to the appearance of the same module, control section, or
common block in more than one place in the link tree. This is somewhat sensi-
ble in that it is difficult to resolve references which appear to be to muiti-defined

symbols. However, such resolution is not impossible, for example, when the
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multiple placement occurs in mutually-exclusive subtrees; the linker simply
resolves references only to paths that are accessible to the reference and diag-
noses all others. Such a facility is only implementable for explicitly placed

modules; automatic placement by the linker is a contradictory function.
14.3 DEBUGGING

To support user program development, CSC proposes that the LCF provide a
comprehensive debugging facility. For maximum utility, the debugging package
should operate in both batch and interactive modes. The success of the debug- i

ging facility will be dependent upon the degree to which the compiler, program

validator, and linker are integrated with it. The primary interface among these

components will be the CDD created by the compiler and used by i1e other tools.

14.3.1 DEBUGGING FACILITIES

’ | The following paragraphs discuss the functional requirements of the debugger;

an outline of the requirements for the CDD follows.

14.3.1.1 Statement Implants

The user often wishes to place debugging statements at selected points in his

program. These points should be identified by either program label or state-

it e

ment number. Because well-structured programs contain few, if any, labels,
the statement number option is quite important in terms of the user interface.

Statement numbers will be generated by the compiler and placed on the source
listing of the compiled program for the user's reference. These implants will

] allow the full range of possible debugging statements (described in the sequel)
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including breakpoints. In addition, implants should be allowed in which the user
can execute certain system commands of the kind that do not destroy the current
program core image (such as displaying time of day, for example). Breakpoints
will cause program interruption; in interactive mode, control is given to the
user's terminals; in batch mode, input is then taken from the primary data input
file. Return from breakpoints will permit the program to continue from the
state of interruption. Implants also should be permitted in segments that are
not necessarily loaded at the time the implant command is given. For example,

such a facility is not permitted in DECSYSTEM-10 timesharing debugging.

14.3.1.2 Debugging Expressions

The user should be able to construct arithmetic and logical expressions that
include program variables referenced by name, subscripting expressions con-
sistent with declared variables, and constants of all forms including status
constants, real constants, bit-pattern and character constants, and integer
constants. Logical expressions should include the connectives AND, OR, XOR,
and the unary NOT operator. Relational expressions which yield the values 1
for true and 0 for false may be constructed. IF statements which include a
THEN option and an ELSE option should be permitted. Expressions and state-
ments should be constructable in a form mirroring the HOL. Debugging
sequences may include labels, GOTOs and repeated constructions (DOs). The

following examples exhibit many of the required features:

Example 1. IF ABC (II, JJ)<>0(SHOW ABC(II,JJ)) ELSE (RESUME); where

the underlined words are debugging verbs, and all other forms are HOL-
derived. Parentheses delimit scope for the "'then' part of the IF and also
for the ""else' part. SHOW is used as the display verb, and RESUME
indicates that execution of the program is to continue from the point of

last interruption.
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Example2. DO .K=1,10(SHOW XX(.K)); where DO is the verb for repeated
constructions, the repeated statements being contained within the following
parentheses. The do-variable is .K - the '"." is used to delimit debugger

variables and distinguish them from program variables - and the limits are

1 and 10. Any number of statements - separated by semicolons - may

appear within the parentheses. The expression XX (.K) refers to the dimen-

sioned program variable XX subscripted by the debugging variable . K.

Example 3. .1=104; L1:SHOW, S #.1; .I=.1+1; IF .1#114 (GOTO LI); where
.1 is initialized to 104, L1 is a label, the "S'" suffix to SHOW says to dis-
play the source statement at statement number contained in .1, .1 is incre-
mented by 1, and the loop terminates with a test on .I and a GOTO. The
effect of the example is to display 10 source statements beginning with

statement 104. The "#'" character is used to denote statement number.

Example 4. AT LABX (IF COUNT < 100 (TRAPS XYZ)); where the AT is
used to place an implant at label LABX, the implant is the IF statement
contained within the parentheses, and the TRAPS verb says to store-trap
the variable XYZ (see sequel for trapping discussion). The effect of the
AT statement is to insert the IF statement at label LABX. Thus, at LABX,
when the program variable "COUNT" exceeds the value 100, the TRAPS

statement is activated.

14.3.1.3 Data Display

The user should be able to display any program data in a form consistent with
the declared data type. This includes the ability to generate table dumps which
include all constituent items which are themselves displayed by type. Dumps

of entire blocks are also required in which all constitucnt tables and items are
displayed by type. Type display should include numeric, character, bit-pattern,
and status.
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14.3.1.4 Name Qualification

To resolve name ambiguity, the user must be able to qualify references to
program variables. Qualification should be permitted by compilation module,
named overlay segment, procedure name, or any other HOL structure in which
qualification is permitted. The user also needs to be able to identify an implicit
qualifier to be used when none is explicitly given with a variable reference.
Thus QUAL A.B.C, for example, would establish the three-part qualifier as a
prefix to all name references until the QUAL statement is cancelled or over-
ridden. Similarly, the user should be able to name a qualifier abbreviation,
such as QUAL X=A.B.C, in which "X" is used as a shorthand qualifier for
A.B.C.

14.3.1.5 Debugger Variables

The user should be able to set and use debugger variables. These will require a
delimiting syntax to distinguish them from program variables (for example, the
use of the preceding "." character as used in the earlier examples). Debugger
variables may be used anywhere their type is appropriate in the syntax of debug-

ging statements.

14.3.1.6 Subroutine Calls

A useful debugging feature is the facility to call program procedures (and func-
tions) from the debugging console; control returns to the console at subprogram
exit. DECSYSTEM-10 timesharing permits this through the ability to execute

machine code directly from the console. In addition to this, the user should be
able to pass parameters in an HOL-like notation to which the debugger responds

by constructing a system standard calling sequence. Thus,
CALL P1(X,Y,7Z);

would invoke procedure P1 with parameters X,Y, and Z. Such a facility is
especially useful in invoking program-specific debugging routines written by

the user.
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14.3.1.7 Trapping

One of the most difficult errors to identify is the case of the random store.
This problem is intensified in languages supporting based storage. To assist
in this problem, the user should be able to identify program variables or
absolute addresses into which stores are trapped causing control to be passed
immediately to the user's console. The most foolproof implementation of this
requires essentially full interpretive running of the user's program. Since this
is a relatively rare problem, the resultant degradation in performance may be
acceptable. However, to mitigate this performance loss, the user should be
able to specify a "trap granularity' of either statement, basic block, or other
arbitrary designation. Thus, when basic block granularity is selected, the

debugger takes control at block start and block end only and examines the value

of the trap cell or cells (a range is permitted) at block exit. This eliminates
full interpretive execution which may subsequently be employed to pinpoint the

errant store. This feature should accommodate both load and store traps.

14.3.1.8 Core Dumps

Core dumps should be provided in which the dump includes both relative and
absolute addresses. The user should be able to specify particular modules or
control sections for dumping, and he should be able to distinguish by storage
class as well (e.g., data segments only). Core dumps should include a display

of module, control section, and block names.
14.3.1.9 Walkback

The debugger should provide the facility to display the chain of procedure calls,
with parameters, between the current point of execution back to the original
program invocation by the system (or back through a user-specified number of

levels). This places a requirement on the compiler to generate subroutine

linkages that conform to walkback requirements.
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14.3.1.10 ON Conditions

The user should be able to specify machine exceptions that cause control to pass
to the user's console. The ON conditions may be applied to the whole program

or to specified domains within the program.

14.3.1.11 Program Inserts/Patches

The user must be able to insert program modifications expressed in machine-
language mnemonic form with symbolic addresses. The debugger should provide
an implicit patch area so that the user need not set aside a blank area for this

purpose.

14.3.1.12 Source Statement Reproduction

The useful capability is reconstruction of the HOL source for any statement in

the program.
14. 3.2 COMDPOSITE DEBUGGING DICTIONARY (CDD)

The CDD will be created by the compiler and output as part of the object module.
The principal elements of the CDD are the symbol table, the statement table,

and the flow table, discussed in the following paragraphs.
14.3.2.1 Symbol Table

The symbol table is constructed largely as a copy of the compiler's own internal
symbol table. The symbol table contains both data names and attributes. The
hierarchical data structure and block/procedure scope will be retained in the
table to support name qualification. Only named data appear in the symbol
table; compiler-generated temporaries, for example, are excluded. Names
are retained with the attribute entries. It is the linker's responsibility to

construct a combined CDD for a linked program.

The combined CDD is designed to be readily searchable by argument name -
by separating the names and collecting them as a file index - with pointers to

the attribute information within the combined CDD. At debugging time, then, it
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is possible for the debugger to hold a certain number of index pages in main
memory and thus reduce the file management demands of the debugger. Attri-
butive information includes data type, size, bit allocation of datum, parent
structure, etc. Status constant names also are held in the symbol table, so

that displays of status variables are appropriately mnemonic. 1

14.3.2.2 Statement Table

The statement table is indexed by statement number and provides the relative
address within the program text of the first executable instruction of the state-
ment. In addition, each statement table entry contains a pointer to the refor-
matted source module if necessary to permit source statement reconstruction.

Label entries in the symbol table segment of the CDD also contain a statement

number in order to provide access to the statement table during debugging.
14.3.2.3 Flow Table

The flow table provides an encoded representation of the program flow as a
directed graph expressed in terms of basic blocks (vertices) and branch struc-
ture (edges). The beginning of each basic block is identified by statement num-
ber, thus providing a cross-reference to the statement table. The flow table

also contains DD-path identification to support the JAVS requirements.

14.4 LANGUAGE TRANSLATORS

The functional specifications for the language translators must be expressed in

terms of the specific language pair. Until the HOL for the LCF is chosen, it

is somewhat pointless to attempt to write the specifications. However, because
momentum is developing within the Air Force to move away from J-3 and towards
J73, the LCF might commission the preparation of a J-3 to J73 translator.

Because J73 derives heavily from J-3, this translation problem is not all that

difficult. Even J-3 I/O statements may be translated as procedure calls to
library-defined /O subroutines. The file declaration itself may be translated
conveniently into a J73 table, which may be passed as a parameter to the 1/0

subroutines. The remainder of the language translates rather handily.
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Translation from other languages, such as PL/1, for example, may be expected
to present a variety of problems. Some languages may permit use of special

characters within identifiers that might not be easily accommodated in the target

N o BT S M i e e 1

language. It may also be required to generate names during the translation, and
this, of course, presents the problem of potentially duplicate definitions. Name
qualification presents another problem that may require clumsy name construc-
tion with its attendant duplication possibility. Complex editing functions - such

'; : as exist in COBOL and PL/I - are resolvable at some level by the use of sub-

routine calls, but even this requires a complex translator. The problem of

decimal arithmetic has been discussed earlier.

In summary, it may be supposed that translating between two languages on the
same machine/operating system will present fewer problems than translating
between two languages on two different machines. The advantages of the same
machine are (1) that word size and data type problems are obviated, and (2) that
the operating system already supports idiosyncratic language constructs - such
as PL/I ON statements - such that library routines may be used to effect these

functions that are not directly implementable in the target language.

The efficiency of the translation process itself is not of very much concern.
Even where large volumes of programs will be translated, it is seen as a one~
shot process, such that a low development cost appears to be the overriding
design criterion. The translator should obviously be written in an HOL, prefer-
ably one that is oriented towards text manipulation problems. (The SYMPL to
J73/1 translator on the 1108 was written in six man-weeks using BASIC. The
developiment time was quite short, but the transiation was cuite slow owing to

the choice of BASIC.)

Inasmuch as source reformatting is suggested as an integral feature of the LCF's
compiler, it would seem to be redundant to include target language formatting

as a requirement of the translators. The translators need not be elegant; rather,
they should be thorough and failure-resistant above all else. Even 100 percent
translation is not strictly required, and diagnostics may be employed by the

translator to aid the user in subsequent manual refinement of the translation.
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APPENDIX A - COMPILER OPTIMIZATION ENHANCEMENTS

This appendix summarizes proposed enhancements to the optimizations presently
performed in the JOCIT J-3 compiler. The optimization scheme now employed is
a Level-I LNRA (Linear Nested Region Analyzer) scheme implemented as a two-
pass process. Pass 1 (known as OPT1) performs all flow analysis and builds
tables defining set and used information for each procedure and loop. Pass 2
(known as OPT2) performs the actual transformations to the code to realize the
principal optimizations of common expression elimination, constant arithmetic,
code redistribution, and operator strength reduction. The optimizer phases
operate on the IL file generated by the analysis phases of the compiler; all
transformations are expressed in the IL, and the output is also in the form of

an IL file which is subsequently processed by the code generator phase (COGEN).
This design permits selectable optimization. If the optimization phases are by-
passed as they are when the NOPT option is selected, the IL generated by the
front end is passed directly to the code generator, In this mode, only those
local optimizations performed by COGEN are effected, and no global optimi-

ation is performed at all.

The enhancements discussed in this appendix assume a solution entire!s within
the framework of the LNRA design. The sum of these improvements will be to
raise the level of generated code significantly. It is expected that for any
target machine the resultant code will occupy less space and execute in less
tice. Furthermore, these proposed enhancements do not violate the present

target-machine-independent design, and thus the tool concept is not compromised

in any way.
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A.1.2 CODE STRAIGHTENING

The optimization approach in the JOCIT Model uscs the LNRA method in which
program flow is determined in a single forward scan of the program (performed
by Optimizer Pass 1, or OPT1), It is the assumption in this approach that a
loop is formed whenever a label is reached via a backward branch. Further-
more, loop optimization is suppressed whenever it is observed that a forward
branch enters a loop; i.e., redistribution and strength reduction are not

attempted on multiple-entry loops (because of the complexity of placing the

redistributed and strength-reduced initialization computations in each of the

loop's entry blocks). These assumptions are entirely valid on well-structured
or "'straight" programs. However, they cause the optimizer to miss some
cases when the code is not straight. A small program segment demonstrates

this point.

The original order of the segment consists of the following five blocks and

their interconnecting flow pains:




The optimizer sees 2-3-4 as constituting a loop formed by the backward branch
from 4 to 2. However, the forward branch from 1 to 3 defeats the potential
loop optimization as described above. Earnest, et al., in ""Analysis of Graphs
by Ordering of Nodes,' JACM, Vol. 19, No. 1, January 1972, pp. 23-42, have
proposed an algorithm that may be applied to place the blocks of a program in

the straightest possible order.

Its application of the preceding example produces an ordering as follows:

This reordered segment is now a single entry loop (3-4-2), and redistribution
and strength reduction algorithms may be applied to Blocks 2 and 4. Block 2,
which is conditional, is excluded. The straightening, then, can be seen fo

have improved the optimization potential.

The code straightening algorithm of Earnest, et al., discovers all program
loops in addition to straightening the order. As a result, the code straightener

may be used to replace OPT1, Instead of reading the IL, the straightener will
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read an extended Global Names List (GNL) file, which will be called the Flow
Graph File (FGF). This file will contain each program label, branch, start
PROC and end PROC delimiters, PROC call, index switch label list, and

index switch call. This information is sufficient to identify the basic blocks

and interconnecting edges. This representation will then be reordered by the
straightener, and the resulting straight order may be represented by an ordered
table of "hatchecks' which identify the blocks of the IL to be read in order by
OPT2. The FGF will be enhanced further to contain entries for each redefined
variable-~LHS of assignments, actual value output parameters, and name
parameters--such that all redefined variable lists currently produced by OPT1
may be produced by the straightener. Since the FGF is considerably smaller
than the 1L, it is anticipated that the straightener will be significant’, faster

than the present OTP1.

A.2 DEAD VARIABLE ANALYSIS

A program variable is said to be dead between its last reference and a subsequent

definition. IFor example, in the program sequence

the variable I is dead between the assignment to QQ and redefinition of I in the
last line. Recognition of dead variables raises two optimization possibilities

which CSC proposes to examine for cost-effective implementation: (1) store

suppression and (2) reuse of dewd variable space.




In the above example, the original store into 'T' may be suppressed if it is
possible to retain '"I'" in some register between definitions. Following from
this, it is seen that retaining '"I" in a register means that no storage is
required, and the allocated space for "I'"' may be reused during the program
segment where 'T" is ''dead' by another program variable or compiler-

generated temporary.

Dead variable analysis may be conveniently performed by OPT2 after an entire
region has been processed. An extension to the definition of a dead variable
may include that program segment between a last use and a program exit

(or PROC RETURN). However, this may only be for those variables whose
first reference in any PROC is a redefinition rather than a reference, i.e.,
those whose values do not survive from one invocation of the PROC to the next.
Since JOVIAL does not permit the programmer to distinguish explicitly between
‘hese types of variables, this will be the compiler's task. The analysis pro-

cedure is not simple, as the following two procedures demonstrate:

PROC A PROC B

ENTER ) ( ENTER )

X = =
5\ e L
|
1
X must be materialized X need not be materialized
at PROC exit at PROC exit




In PROC A there is a path (1-4-3) on which "X" is used before it is set, while

in PROC B there is no path to the use of '"X" in 3 which does not first redefine

"
P2

The objectives of dead variable analysis are:

[ ]

A.3 LOOP OPTIMIZATIONS

To suppress unnecessary stores

To recognize possibilities of allocated space-sharing between

programmer variables and compiler-generated temporaries

To eliminate unnecessary storage allocation for variable held

in registers

To help the code generator retain variables in registers

In addition to redistribution and strength reduction optimizations currently per-

formed, loop code can be improved in the following areas:

Delaving of stores

Index register dedication of loop control variables (including

strength reduction-generated ones)
Register dedication of redistributed and common values

Strength reduction test replacement and dead loop control variable

climination
Strength reduction of addition

Loop collapse

I'xtension of strength reduction to non-I"OR loops




A.3.1 DELAYING STORES

Often with loop code, a variable is repetitively assigned. All but the store
immediately preceding loop exit are redundant, and dedicating the variable
to a register within the loop and delaying the store into the variable until

after loop termination can improve loop performance. For example, in the

following program:

YY($08) = 08
FORI =1,2,993
IF XX(3I3) GR YY($0$)$
YY($08) = XX(3I$)$

if "YY" is dense-packed, the redundant stores within the loop may be quite costly.

The optimizer may recognize the case and transform the program as follows:

temp = 08§
FORI=1,1,99%
IF XX ($I$) GR temp$
temp = XX($1$)$
YY($08) = temp$

Thus, in the example, if '"temp' is dedicated to a register, both code space and

execution time are reduced.
A.3.2 INDEX REGISTER-DEDICATION OF LOOP VARIABLES

Allocation of loop control variables to index registers eliminates loads and
stores within the body of the loop, thus compressing the loop and speeding it
up as well. This optimization should be applied both to programmer loop
variables and to optimizer-generated loop variables arising from strength

reduction. Such dedication may be expressed by means of accenting the
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REPL IL operator to indicate that the LHS (the loop variable initialization and
increment code, for example) is a candidate for loop dedication. The ENDL

operator would signal the code generator to free such loop-dedicated variables.
A.3.3 REGISTER-DEDICATION OF REDISTRIBUTED VALUES

The optimizer moves all redistributed values into the loop entry block. This
redistribution is indicated by the VALD operator. The optimizer will mark
such redistributed values to make the code generator aware of the motion and
to identify the loop from which the values were removed; this will enakle the
code generator intelligently to select which are the best candidates for register
dedication. Even on limited register machines, such as the HIS~-6000 series,

this can be useful as in the case of a table search, for example:

FORI = 0,1,999%
IF XX($I$) EQ PATTERNS
XX(SIS) = 03

In this case, PATTERN may be profitably assigned to an accumulator before
the loop (especially helpful if XX is full-word addressable), and the interior
of the loop is made smaller and faster. At the current level of optimization,
XX (81$) is loaded and compared with PATTERN, whereas (assuming XX is
full-word addressable) PATTERN may be loaded outside the loop, and only
the comparison code is required inside. This same optimization may be
performed for values found common and therefore computed outside the loop.

A.4 STRENGTH REDUCTION TEST REPLACEMENT AND DEAD LOOP
CONTROL VARIABLE ELIMINATION

During the process of strength reduction, it may be the case that all uses of
a loop control variable will have been reduced, such that the loop control
variable may be considered dead. In such a case, all references within the

body of the loop will have been replaced by generated loop control variables,
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and the code to initialize, step, and test the original variable is all that remains.
k Strength reduction test replacement means to replace the test of the original loop

control variable with a derived test on a generated loop control variable. This

can be seen from the following simple example

FORI = 0,1,9%
XX($1*3%) =08

which when reduced in strength by the optimizer effectively becomes:

temp =03
FORI1=0,1,9%
BEGIN '"T"

B

XX($temp$) =08
; temp = temp+3$
END 'I"
If the test against [ were replaced by a test against temp, the program could be

rewritten:

FOR temp = 0,3,27$
FORI=0,1%
XX ($temp$) = 0$
Thus, the use of I is entirely dead, all references are eliminated, and the

following simplified and improved program emerges:

B FOR temp = 0,3,27$
XX ($temp$) = 0$

A.4.1 STRENGTH REDUCTION OF ADDITION

The current strength reduction algorithm includes only the reduction of multi-

plication and exponentiation. The reduction of addition (which reduces to
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another addition) is scnsible when it leads to further reduction possibilities.

For example, the following program,

FORI = 0,1,998
BEGIN 'T"
FOR J = 0,1,998
AAISI, J3) = 08
END '

in the current JOCIT model reduces only the implicit multiply of J: the subscript
expression I, J is lincarized to I!d1 *J, where d1 is the first dimension of AA.
Assuming that AA is 100 by 100 (d1 is then 100) the equivalent code after strength

reduction is:

FOR I~ 0,1,99%
BEGIN """

11 = 08 "REDUCTION OF 100*J WHICH IS INITIALLY 0"

TOR J = 0,1,998%
BEGIN "J"
AA($I+11$) =0$
t, = t; 11008
END g
END 'T"

An improvement to this would result from the reduction of the I+t in the inner

loop. A straightforward reduction would give:
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FORI=0,1,998
BEGIN "I"
=0
t $

T 18 "FROM REDUCTION OF I+ WHICH IS
“ INITIALLY I"

FOR J = 0,1,998

BEGIN "J"
AA($t2$) = 0%
t =t 1100
J e | ¥
=t +
t2 tz 1008
E\T') 'IJH

ZND 'I"

This reduction as shown is actually a degradation of the original program unless
the dead loop control analysis is applied along with test replacement. The result

is a significant improvement as the following equivalent program shows.

FORI=0,1,998

BEGIN "T"
FOR t, =1,100,9900+13
AA($t2$) =03

NOTE: The expression 9900+I is loop constant over the inner loop, and thus

is properly redistributed.

A4.2 LOOP COLLAPSE

If the preceding example were rewritten with the subscripts reversed,

FORI=0,1,998
BEGIN '"T"
FOR J = 0,1,998
AA$JT,I$) =08 "J,1 instead of I,J"

END 'T"




the effective reduction looks like the following:

t3 =998

FOR tl =0,100,99008

BEGIN "t "
FOR t, =t ,1,t,$

AA(SLS) = 03

= t_+1008
t3 t3 1008

END e "
4

A close analysis of the above reduction reveals that the inner loop control

variable (the generated one, t2) steps consecutively from 0 to 9999; thus, the

inncr loop mayv be collapsed into the outer loop leaving a single loop as follows:

E [FOR t4 0,1, 9999%

.\.A($t4$) 03

This continuous stepping function may be recognized by observing that the
dilference between the terminal value of one iteration and the initial value of
the next is precisely the step value of the inner loop control. For example,
the terminal value of the t2 on the first iteration is 99 (t3), and the initial
value of the sccond iteration is 100 (stepped value of tl); the difference, 1,

is the step value for t .

A comparison of the various levels of optimization discussed as applied to the
simple example discussed above shows the progressive improvements. The

examples shown assume the HIS-6000 as the target machine.
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No Optimization

Total: 14/Inner loop: 8 (incl. multiply)

STZ 1

L1 STZ J

L2 LKQ J
MPY 100,DL

4 ADQ I

STZ AA,QL
ACS J
LDA J
CMPA 100,DL
TMI L2
AOS I
LDA I
CMPA 100,DL
TMI L1

Optimization - Level 1: Current JOCIT Optimizer

Ui i At i o5 0 533

Total: 15/Inner loop: 8 (no multiply)

STZ I
11 STZ J
STZ t1 t1 = J*100 = 0
L2 LDQ I
ADQ t1 [+J*100
i STZ AA,QL
4 LDQ 100,DL
ASQ t1 t1 = t1+100
: AOS i
K- CMPA 100,DL
TMI L2
i AOS I
LDA I
CMPA 100,DL
TMI L1




Optimization - Level 2: Reduction of Addition, Test Replacement,

Dead Loop Variable Elimination

L1

L2

STZ
LKQ
STQ
ADQ
STQ
LDQ
STZ
ADQ
STQ
CMPQ
TMI
AOS
LDA
CMPA
TMI

Total: 15/Inner Loop: 6

I
I

¢ £
#o1,DL 2
t3 t3 =9901+1
)
AAQL  AAGSLS$) =08
100,DL

ty = ty+100
t3
1
I
I
100,DL
L1

Optimization - Level 3: Level 2 + Register Dedication

L1

LXL1
EAX2
EAA
STA
STZ
EAX2
CMPX2
TMI
EAX1
CMPX1
TMI

Total: 11/Inner Loop: 4

0,DL I=0

0,X1 to =1
9901,X1

tg tg =9901+
AAX2  AA(St$) = 03
100,X2 to = t5+100
t3 test ty vs. tg
L2

1,X1 =1+
10,DU

11

Optimization - Level 4: Level 3 + Loop Collapse

L1

E AX1
STZ
EAX1
CMPX1
TM

Total: 5/Inner Loop: 4

0,DU
AA,X1
1,X1
9999,DU
L1
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A.4.3 EXTENSION OF STRENGTH REDUCTION TO NON-FOR LOOPS

In the current JOCIT optimizer, strength reduction is applied only to formal
(i.e., FOR) loops. Strength reduction may, however, be generalized to
include the reduction of functions of any variable satisfying the following

conditions:

s The variable is iteratively redefined once only with the scope of
some loop; i.e., the variable ("I" for example) is defined by
I1=I+korlI=I-k

° The variable is nowhere else redefined within the loop

] The redefinition expression (k in the above example) is constant

over the same loop in which the variable is iteratively redefined

The recognition of such variables, functions of which are candidates for
reduction, will be the responsibility of OPT2 which will employ a double scan
of program loops identified by OPT1.

A.5 PARALLEL PATH OPTIMIZATIONS

The IF...THEN...ELSE and CASE constructions in HOLs produce parallel
paths in the resulting program flow graph. Certain optimization possibilities
arise because of this form of flow which are not addressed in the present TOCIT

optimizer. The optimizations considered in the following sections are:

o Improved forward flow analysis
° Load promotion/store delay
® Common name recognition




A.6 IMPROVED FORWARD FLOW ANALYSIS

in the current JOCIT optimizer, all forward branches are treated as conditional
insofar as their effect on the state of the search set is concerned. For example,

in the following program segment:

(D
o
oI

the assignment to '"a" in Block 2 prevents "atb" in Block 3 from being recog-
nized as common with that in Block 1 although they compute the same value.
The analysis can be improved in OPT2 by restoring search set value numbers
at block entrances whose immediate textual predecessor block exits by an

unconditional branch.
A.6.1 LOAD PROMOTION/STORE DELAY

In any multipath graph, code space can be saved by preloading common values

and by delaving common stores as the following simple case demonstrates:

IFEITH BOOLS$
AABIHIS) = KK*58
ORIF 18
AASIHIS) = KK*5+18

A-16
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In the current JOCIT compiler, if neither I+J nor KK*5 appear before the
IFEITH, the code (shown for the HIS-6000) will be:

LDA BOOL
TZE L1
LDQ I
ADQ J
4 EAXO 0,QL
3 LDQ KK
3 MPY 5,DL
1 STQ AA,X0
41 TRA L2
- § L1 LDQ I
1 ADQ J
| EAX0 0,QL
3 LDQ KK
2 MPY 5,DL
E | ADQ 1,DL
| STQ AA,X0
L2
Total 16

Applying the diamond optimizations, the code would be:

LDQ I
i ADQ J PRECOMPUTE I+J
g EAX0 0,QL SAVE IN X0
; LDQ KK
MPY 5,DL PRECOMPUTE KK*5--
. SAVE IN Q
LDA BOOL
TNZ L2 TRUE CASE NOW NULL!}
L1 ADQ 1. 0L FALSE CASE:
COMPUTE KK*5+
L2 STQ AA,X0 DELAYED STORE OF
AA(SI+JS)

Total 9 Reduction = 449
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A.7 NAME COMMONALITY

The current JOCIT optimizer employs the value-folding technique to implement
common expression recognition. This excludes recognition of certain cases in
which expressions are computed on parallel paths which are formally common
but which may compute different values. The following program example
demonstrates:
IFEITH BOOLS
PP(XX+YY)$
ORIF 1$ BEGIN
XX=XX+$ PP(XX+YY)$
END
oot a N Y Vi gree
In this example, the expression XX+YY after the IFEITH/ORIF construction
is formally common with the XX+YY computed on each path of the diamond;
however, since it computes different values--XX is redefined on the ORIF

path--the optimizer will not recognize the common case. This problem may

be solved within the present value-folding design by the following technique:

® At the terminus of parallel naths, all live names and expressions
are permuted for formal name matching. This involyes examining
the value synonym list and substituting the different name synonyms
until the list is exhausted or a match occurs on both paths. In
practice, synonym lists for values are quite short, so that this

process is not prohibitively slow.

@ Common names and expressions so recognized are then assigned to
temps on the parallel paths. (e.g., XX+YY is assigned to T1 on
both paths in the above example). The same temp is used as a

surrogate name for the common expression. This is to give the




expression a common residence on both paths which the code gener-

ator may subsequently assign to a register in order to achieve the

desired optimal effect.

° Common names and expressions thus recognized are now posted to
the search set in the usual manner, and the temp is also posted as
a synrn 'm for the posted value. Thus, subsequent occurrences of
the expression are found common through the conventional folding
technique. Dead variable analysis may delete the assignments to
the temps on the parallel paths. The optimization is realized by
the code generator when it is called to compute the value common
subsequent to the parallel network; the temp (which may have been
register-dedicated on each path) is chosen as the optimal source of

the value.

In the example given above, the value XX+YY is stored in a temp, the same
temp, on each path in order for it to be passed as a value parameter in the
calls to PP. Thus, references to XX+YY after the diamond may be replaced

by references to the temp.

A.8 USE OF COMPOOL BY THE OPTIMIZER

A.8.1 REDEFINED VARIABLE LISTS FOR COMPOOL DEFINED PROCEDURE

Optimization may be enhanced through extension of the COMPOOL concept.
The greatest potential payoff is in refining the spoil analysis at COMPOOIL-~
defined procedure calls. Another useful application is in the use of branch

frequency information to improve certain loop optimizations.

In the present JOCIT optimizer, calls to local procedures invoke a spoiling
process in which only those variables global to the called procedure and

also to the point of call are assumed to be redefined by the calli. This process
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is mechanized in OPT1 which constructs a list of global variables redefined by
the procedure. The list also includes other procedures called, so that cascaded
effects are accommodated. For calls to externally-defined or COMPOOL-
defined procedures, the optimizer makes the assumption that all external and
common data are spoiled by the call. This is clearly a safe but overly conser-

vative assumption.

An improvement may be experienced by appending redefined variable list informa-
tion to the COM POOL entry for each procedure during COMPOOL assembly. This
requires one or both of two other changes to the COMPOOL process. The first
requires the programmer to specify in the COMPOOL declaration for the pro-
cedure those global variables assigned and those external procedures called.

The sccond approach requires that the COMPOOL source for procedures include
the entire procedure body. In this case, OPT1 would be called as part of the

COM PPOOL assembly, and its constructed RVL would be output with the procedure
entry in the COMPOOL.

A.8.2 BRANCH FREQUENCY DATA

As part of the integrated approach to the LCF design, execution measurement
data may be subjected to postmortem reduction and the branch frequency data
entered into the program COMPOOL. The hranch points would be identified by
statement number. Thus, subsequent compilations of the program would pro-
vide for access to the branch {requency data in that program's COMPOOL by
the optimizer for the purposes of replacing branch frequency assumptions by
actual operational experience. A limitation inherent in this approach is that
source program modifications to the measured program are prohibited between
any measured cxccution and a subsequent recompilation. This guarantees that
the statement number data is consistent between the COMPOOL and the sub-

sequent compilation.

A=20




A.9 MISCELLANEQUS OPTIMIZATION ENHANCEMENTS

A.9.1 VALUE USAGE CONTEXT

The optimizer wii! set bits in each VALU entry in the IL to indicate the con-
texts in which the value is used. These bits may distinguish between computa-
tional usage and subscript usage, for example, and will aid the code generator
in register allocation for values. For example, a value having only subscript
uses may be profitably allocated to an index register. The current JOCIT code
generator already makes use of this information, so the setting of these bits

yields a low-cost object code efficiency improvement.
A.9.2 UNREFERENCED PROCEDURE DELETION

It frequently happens that as a program ages, certain procedures are no longer
referenced, and the programmer fails to remove them. This is an easy case
for the compiler to recognize, and the unreferenced procedure need not be

compiled.
A.9.3 SINGLE-REFERENCE PROCEDURE OPTIMIZATION

A procedure with only one reference may perhaps be more efficiently compiled
as an open routine with actual parameters substituted for formal parameters.
This substitution may be performed by OPT2 (or perhaps the straightener) by
collecting the actual parameter IL code and substituting it for the corresponding
formal parameter IL code, and by eliminating the procedure prologue and

epilogue.
A.9.4 REFINED REGION DEFINITION

That segment of the program optimized by the JOCIT compiler in a single unit
is known as a region. Currently it is the case thatl a region break occurs when

the optimizer exhausts working storage for the region. When this happens, the
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IL is flushed, and working space is recovered for the next region. Inthe pro-
duction compiler, working space is sufficient to permit the optimization of

several hundred source lines per region.

CSC proposes that the region end definition be refined to prevent the termination
of a region within a loop that might otherwise be contained. This can be accom-
plished by the straigatener, which will record for each loop entry in the loop list
the number of IL entries associated with the loop body. OPT2 may then estimate
the working storage requirements - based on the IL count for the loop - whenever
a loop top is secen. and terminate the region before the loop in the event that
working space is insufficient. This will permit the optimization of a loop, or
nest of loops, within a single region, which the termination of a region in mid-
loop prevents (e.g., after such a region end, no strength reduction or redistribu-

tion may occur).
A.9.5 REASSOCIATION, DISTRIBUTION, AND CONSTANT COLLECTION

Subscript expressions, linearized by the analysis phase, may be more com-
pletely optimized if the rules of reassociation, multiply distribution, and

constant reordering are applied. These rules, to be implemented in OPT2,
are summarized as fusllows ("K' stands for any constant, and "'&'" stands for

any associative operator*):
Reassociation

15 The expression (A & Kl) & K2 is changed to A & K3,

where l\':; I\’l & Kg
A The expression (A & K) & B is changed to (A & B) & K
3e The expression (A & Kl) & (B & K2) is changed to (A & B) & K3,

' K. =K, &K
where 3 hl& 5

*Add and multiply are the only associative operators of interest in this
discussion.
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Distribution of Multiply

4. The expression (A +K1) * K2 is changed to (A * K_)) +K

= *
where K3 K2 K1

Constant Reordering

31

5. The expression (K & A) is canonically reordered to (A & K)

The effect of these can be seen on the following two-dimensional array refer-
ence XX ($14,J+1$), where XX is a 10-by-10 array. The linearized subscript
is (1) + (J+2)*10. The successive application of the above rules to the triads

as seen left-to-right is shown:
(1) becomes (I+l) by Rule 5.
(J+2)*10 becomes (J*10)+20 by Rule 4.
(I+1)+((J*10)+20) becomes (IHJ*10))+21 by Rule 3.

One of the primary effects of these rules is that any constant offset is floated

to the right where it is removed by the code generator and placed in the address

field as an address offset.

il
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APPENDIX B - GLOSSARY

ALGOL Algorithmic Language. There are two versions, ALGOL 60
and ALGOL 68. ALGOL is used as a publication standard and

by universitites. First use of GENESIS system was for the

ALGOL 66 language e mploying the same compiler on five

different hosts generating code for six different targets.

ANZR Machine and Language~Independent Syntax Analyzer Program.
ANZR is the canonical analyzer program that processes source
language statements according to the syntax tables generated
by the GENESIS system for a particular HOL, ANZR is employed
in both syntax passes of the JOCIT compiler and in the syntax

analysis phase of the COMPOOL assembler.

CDD Composite Debugging Dictionary. The CDD is proposed in
this report as an output of the HOL compiler to be used by the
recommended statistics collection, program validation, and

program debugging tools.

CF Code File. This file is used as the interface in the JOCIT
compiler between the preset processor and editor phases and
also between the code generator and editor phases. It contains
an encoded representation of both object code data and instruc-
tions. The editor phase converts the code file to actual object
module format for the target machine.

Construct The file of language tokens operated on by the ANZR program

String y :
s within the analysis phases of the JOCIT compiler. First

generated by the Precognition program, the construct string

is analyzed and modified by Pass 1 analysis to recognize data




Cradle

CSTS

DD-path

GCOS

GENESIS

declarations. Executable statement tokens are then passed in
the construct string as an intermediate file to Pass 2 analysis
for generation of the IL file. The Pass 2 process applies the
rules of the GENESIS syntax tables to recognize statements

and in the process reduces the string until it is exhausted.

The JOCIT compiler executive component that provides all
host system/compiler interfaces, such as I/O services, phase
loading, ete. Itis a collection of functionally independent
modules that must be changed when rehosting the JOCIT

program.

Computer Sciences Teleprocessing System. This is the time-
sharing system operating on the UNIVAC 1108 as the program
service for the INFONE T Division of Computer Scicnces

Corporation,

Decision-to-Decision Path. A term used in the JAVS docu-
mentation to describe the domain of a program between one
conditional branch and a subsequent one. Program validation
is described, in part, in terms of the exercise of all of the

DD-paths in the program.,

This is the operating system for the HIS-6000 series of
machines. It provides both batch and interactive/timesharing
services. This is the system under which JOCIT and JAVS

are presently implemented.

A system developed by Computer Sciences Corporation for
describing the syntax of HOLs. The output of GENESIS is a
set of syntax tables which encode the described syntax. These
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tables are then incorporated permanently into a compiler and
are processed by the standard ANZR program in parsing the
source language input to the compiler. The GENESIS approach
is employed in the JOCIT compiler. It currently resides on
the INFONET 1108/CSTS, and future plans call for its rehost-
ing to GCOS.

The standard assembly language and macro processor for the

HIS-6000 series.

High-Order Language. An abbreviation for any number of
procedure-oriented programming languages above the assembly

language level.

Intermediate Language. In this report, IL refers to the file
generated by the analysis phase of the JOCIT compiler which
contains an encoded representation of the executable program
structure of a compiled module. It is generated in RPN form
and is the input to the code generator which translates the IL
into machine code. When optimization is selected, the IL is
processed and transformed by the optimizer before it reaches
the code generator. Thus, all global optimization and source

local optimization are expressed in the IL file.

The Information Network, a division of Computer Sciences

Corporation, which operates the 1108/CSTS service.

JOVIAL Automated Verification System. JAVS was developed
by RADC to assist in comprehensive and systematic testing

of JOVIAL/J~3 programs.




JCVS

JLMT

JOCIT

JOVIAL

JXEC

ILCF

MONITOR

JOVIAL Compiler Validation System. JCVS was developed by
RADC to provide « standard for measuring all JOVIAL com-

pilers.

JOVIAL Language Measurement Tool. A term used to des-
cribe a statistics-gathering methodologv for the JOVIAL/73

language.

JOVIAL Compiler Implementation Tool. Developed by RADC
to provide a standard compiler for the JOVIAL/J-3 Language
which employs extensive optimization and which permits

convenient rehosting and retargeting of J-3 compilers.

Jules' Own Version of the International Algebraic Language.
Developed at SDC during the late 1950s and early 1960s,
JOVIAL has been widely used as a standard for military
command/control systems. Several dialects exist. The
military standard is J-3, described in Air Force Manual
AFM 100-24. The JOCIT compiler implements the full J-3
language. A major evolutionary development of JOVIAL is
the J73 language whose final definition appeared in 1975. The
only known implementation of the Level I subset of J73 is on
the DEC-10 system developed for Wright-Patterson AI'B,
AFAL (Air Force Avionics Laboratory).

The component name of the principal compiler executive

(also known as cradle) module of the JOCIT compiler.
Language Control Facility.

JOVIAL/J-3 statement that implements run-time tracing of
assignments to the variable named in the MONITOR state ment,
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Regional
Optimizer

RPN

Timesharing system developed at M.I.T. for the GE 645
system. A unique feature of MULTICS is that it is implemented
almost entirely in a subset of PL/1,

A set of routines that support the analysis phases of the JOCIT
compiler. The functions are invoked by the ANZR program
when syntactic recognitions are made, and the rule governing
the recognition names a pragmatic function. The function
name as well as the recognition rule are encoded in the
GENESIS-produced syntax tables which govern the analysis

process.

A part of the first analysis pass of the JOCIT compiler that
performs primitive construct or token (reserved words, con-

stants, comments, special marks, etc.) recognition.

Rome Air Development Center. RADC is the sponsor of this
report and all of the existing tools described.

Refers to the optimization scheme employed in the DEC-10
J73/1 Compiler. 1Itis a Level II LNRA (Linear Nested Region
Analyzer) scheme in which the program is optimized in
regions that are terminated by work space exhaustion or the

occurrence of loop-top labels.

Reverse Polish Notation. This is the form of the IL produced
by the analysis phase of the JOCIT compiler. It consists of a
string of operands and operators in which the operands always
precede the operator. Sometimes referred to as postfix

notation. As opposed to infix notation (for example, (A+B)*C)

where the operator is placed between the operands and where
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parentheses are required to express nonstandard procedure,
RPN is parenthesis-free (for example, A B+C* is the RPN

for the previously given infix notation),

Semantics-Oriented Language. SEMANOL is a program
developed under RADC sponsorship that permits the full
syntactic and semantic specification of any programming
language and supports both the analysis and interpreted

execution of programs written in the language.

A line-oriented text editor operating under the DEC-10
timesharing system.

Systems Programming Language. SYMPL was developed by
Computer Sciences Corporation as a compiler implementation

language and used for the development of JOCIT.

The output of the GENESIS program. The syntax tables con-
tain an encoded representation of the recognition rules pre-

sented as input to GENESIS.

Text Editing Program resident in both the DEC-10 and
MULTICS systems.

A JAVS directive that permits the run-time display of program

variables as they are changed in value by assignment.

A term used to describe the value associated with any primitive
or expression operand. The term is unique to the optimizer

technology employed in the JOCIT Compiler.

Worldwide Military Command and Control System.
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METRIC SYSTEM

BASE UNITS:

* To be avoided where possible

3 Quantity Unit SI Symbol Formula _
length metre m
mass kilogram kg
time second s
electric current ampere A
thermodynamic temperature kelvin K
$ amount of substance mole mol
luminous intensity candela cd
SUPPLEMENTARY UNITS:
plane angle radian rad
solia angle steradian sr
DERIVED UNITS:
Acceleration metre per second squared m/s
activity (of a radioactive source) disintegration per second (disintegration)/s
angular acceleration radian per second squared rad/s
angular veloaity radian per second rad/s
area square metre m
density kilcgram per cubic metre kg/m
electrnie capacitance farad F A-slV
eiectnical conductance siemens S AN
vlectre field strength volt per metre Vim
electric inductance henry H V:siA
electric potential difference volt v WA
electne resistanc e ohm VIA
electramotive force volt \Y WA
PHeTRY joule J N-m
entiopy joule per kelvin JIK
force newton N kg-m/s
i frequency hertz Hz (cycle)is
| Humpar: e lux Ix Im/m
lununance candela per square metre cd/m
luminons flux lumen Im cd-sr
magnetic field strength ampere per metre A/m
magnetic flux weber Wb Vs
miagnet.e hux density tesla it Wbim
magnetomotive foroe ampere A
power watt w Jis
| pressire pascal Pa N/m
| vantity of plecto ity coulomb (¢ As
' quantity uf heat |nufc' ] N:m
i radiant intensity watt per steradian Wisr
H specific heat joule per kilogram-kelvin Jikg-K
Stress pascal Pa Nim
thermal conductivity watt per metre kelvin Wim-K
vielocaty metre per second m/s
viscosity . dynamic pascal-second Pa's
E | viscosity, kinematic square metre per second m/s
E ¢ voltage volt Vv WA
E o volume cubic metre m
1 E wavenumber reciprocal metre (wave)/m
i work joule J N'm
¢
: : SI PREFIXES:
1§
! Multiphication Factors Prefix SI Symbol
] { 1,000 000 000 000 102 tera T
i 1 000 000 000 -~ 10" RiKa G
i 1000 000 - 10* mega M
: 1000 - 10" kilo k
5 100 = 10?2 hecto* h
§ 10 = 10" deka* da
i 0.1 = - deci* d
i (20 il 1) centi® 8
i 0noor - 10 milli m
§ 0000001 10 * micro u
0000 000 001 10 ¢ nano n
0000 000 noo 00 10 12 pico P
().000 000 000 000 001 ) {1 3l fomto f
0 000 000 000 000 000 001 | 1) alto n




MISSION
of

Rome Air Development Center

RADC plans and conducts research, exploratcry and advanced
development programs in command, control, and communications
(C3) activities, and in the C> areas of informatior sciences
and intelligence. The principal technical mission areas

are communications, electromagnetic guidance and control,
surveillance of ground and aerospace objects, intelligence
data collection and handling, information system technology,
ionospheric propagation, solid state sciences, microwave
physics and electronic reliability, maintainability and
compatibility.
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